Skip to main content

NLSY79

Attachment 102: State FIPS Codes

This attachment lists Federal Information Processing Standards (FIPS) codes used to code respondents' state of birth and state of residence. The FIPS codes are taken from the Federal Information Processing Standards Publication 5-1, published June 15, 1970, FIPS 5-1, which supersedes FIPS 5, published November 1, 1963.

Specifications for states and outlying areas of the United States

  1. Name of Standard. States and Outlying Areas of the United States.
  2. Category of Standard. Federal General Data Standard, Representations and Codes.
  3. Explanation. This standard provides names, abbreviations and codes for representing the 50 States, the District of Columbia, and the outlying areas, all of which are considered to be "first order subdivisions" of the United States.
  4. Qualifications. In the application of this standard, any of the three forms of representation (i.e., names, abbreviations, or codes) may be used to represent those data elements having values (data items) of States or outlying areas of the United States. Names and abbreviations are preferred when human considerations and input reliability are important. The two character numeric code may be used in those applications where machine and numeric sorting considerations are more important, since a sort on the numeric code arranges the States in alphabetical sequence. The codes from FIPS 10, Countries, Dependencies, and Areas of Special Sovereignty, are listed in this standard for the outlying areas of the United States. The form of representation used (i.e., names, abbreviations, or codes) should be identified in format descriptions when data are interchanged.
  5. Special Information. Changes in this revision of the standard are noted by an asterisk in the left margin. Also, the number of changes which have occurred to an item since its original publication is noted by a superscript character following the code. All changes are explained by footnotes.
  6. Specifications. See following tables.
Table 1: States of the United States (including the District of Columbia) with their assigned codes.
Name Abbreviation Code
Alabama AL 01
Alaska AK 02
Arizona AZ 04
Arkansas AR 05
California CA 06
Colorado CO 08
Connecticut CT 09
Delaware DE 10
District of Columbia DC 11
Florida FL 12
Georgia GA 13
Hawaii HI 15
Idaho ID 16
Illinois IL 17
Indiana IN 18
Iowa IA 19
Kansas KS 20
Kentucky KY 21
Louisiana LA 22
Maine ME 23
Maryland MD 24
Massachusetts MA 25
Michigan MI 26
Minnesota MN 27
Mississippi MS 28
Missouri MO 29
Montana MT 30
Nebraska NE 31
Nevada NV 32
New Hampshire NH 33
New Jersey NJ 34
New Mexico NM 35
New York NY 36
North Carolina NC 37
North Dakota ND 38
Ohio OH 39
Oklahoma OK 40
Oregon OR 41
Pennsylvania PA 42
Rhode Island RI 44
South Carolina SC 45
South Dakota SD 46
Tennessee TN 47
Texas TX 48
Utah UT 49
Vermont VT 50
Virginia VA 51
Washington WA 53
West Virginia WV 54
Wisconsin WI 55
Wyoming WY 56

The following codes are reserved for possible future use in identifying:

  • American Samoa (03)
  • Canal Zone (07)
  • Guam (14)
  • Puerto Rico (43)
  • Virgin Islands (52)

Note: In addition to the FIPS county codes, the following codes were used when the place name was not specific enough or the place name could not be found:

Place

City/Area

Code

Mexico  

99090

New York New York City

500

APO New York

500

Attica (ns)

300

Long Island

600

Oklahoma Tulsa (ns)

400

Wisconsin Milwaukee

600

Missouri Kansas City

700

Texas Corpus Christi (ns)

702

Richardson (ns)

701

Amarillo (ns)

700

Pleasant Grove (ns)

703

West Virginia Huntington (ns)

200

Louisiana Cut Off (ns)

200

Oregon Salem (ns)

200

Alabama Laton Hill

200

Arkansas Bow and Arrow

200

Table 2: Outlying areas of the United States with their assigned codes.
Name State Code Country Code Post Office Notes
American Samoa

60

AQ

  U.S. territory in the Pacific.
Canal Zone

61

PQ

CZ

Territory in Panama leased by U.S.
Canton and Enderbury Islands

62

EQ

  Under common U.S.-U.K. administration.
*
See #5 Special Information above

631
Note 2.1

     
*
See #5 Special Information above

641
Note 2.2

     
*
See #5 Special Information above

651
Note 2.2

     
Guam

66

GQ

GU

U.S. territory in the Pacific.
Johnston Atoll

67

JQ

  U.S. territory in the Pacific. Includes Sand Island.
*
See #5 Special Information above

681
Note 2.2

     
*
See #5 Special Information above

691
Note 2.1

     
*
See #5 Special Information above

701
Note 2.1

     
Midway Islands

71

MQ

  U.S. territory in the Pacific.
Puerto Rico

72

RQ

PR

Commonwealth associated with the U.S.
Ryukyu Islands, Southern

73

YQ

  U.S. administered islands in the Pacific south of 27° 52? No. Lat.; 128° 14 E. Long. and the Daito-jima.
Swan Islands

74

SQ

  U.S. territory in the Caribbean.
* Trust Territories of the Pacific Islands
See #5 Special Information above

751
Note 2.3

TQ

  U.S. administered: Includes Caroline, Mariana, and Marshall island groups.
U.S. Miscellaneous Caribbean Islands

76

BQ

  Includes Navassa Islands, Quito, Sueno Bank, Roncador Cay, Serrana Bank, and Serranilla Bank.
U.S. Miscellaneous Pacific Islands

77

IQ

  Includes Kingman Reef, Howland, Baker and Jarvis Islands, and Palmyra Atoll.
Virgin Islands

78

VQ

VI

U.S. territory in the Caribbean.
Wake Island

79

WQ

  U.S. territory in the Pacific.

Note: Post Office Abbreviations have not been assigned to all outlying areas of the United States.

Note 2.1: 631, 691, and 701. Deleted FIPS 5-1,F June 15, 1970. Previously assigned to the Caroline, Mariana, and Marshall Islands respectively. These islands are now included under the Trust Territories of the Pacific Islands with the new numeric code 75 and the alpha Country Code TQ (as assigned in FIPS 10, 'Countries, Dependencies and Areas of Special Sovereignty.')

Note 2.2: 641, 651, and 681. Deleted FIPS 5-1, June 15, 1970. Previously assigned to the Cook Islands, the Gilbert and Ellice Islands, and Line Islands, Southern respectively. These islands are no longer considered to be outlying areas of the United States and are identified and coded in FIPS 10, 'Countries, Dependencies and Areas of Special Sovereignty.'

Note 2.3: 751 Revised FIPS 5-1, June 15, 1970. Previously assigned to the Tokelau Islands which are no longer considered to be an outlying area of the United States. These islands are identified and coded in FIPS 10, 'Countries, Dependencies and Areas of Special Sovereignty.'

U.S. Government Printing Office: 1970 O - 397-525

Click below to expand and collapse the FIPS tables.

Alabama through Montana with County Codes

01 ALABAMA (AL)

  • 001 Autauga
  • 003 Baldwin
  • 005 Barbour
  • 007 Bibb
  • 009 Blount
  • 011 Bullock
  • 013 Butler
  • 015 Calhoun
  • 017 Chambers
  • 019 Cherokee
  • 021 Chilton
  • 023 Choctaw
  • 025 Clark
  • 027 Clay
  • 029 Cleburne
  • 031 Coffee
  • 033 Colbert
  • 035 Conecuh
  • 037 Coosa
  • 039 Covington
  • 041 Crenshaw
  • 043 Cullman
  • 045 Dale
  • 047 Dallas
  • 049 DeKalb
  • 051 Elmore
  • 053 Escambia
  • 055 Etowah
  • 057 Fayette
  • 059 Franklin
  • 061 Geneva
  • 063 Greene
  • 065 Hale
  • 067 Henry
  • 069 Houston
  • 071 Jackson
  • 073 Jefferson
  • 075 Lamar
  • 077 Lauderdale
  • 079 Lawrence
  • 081 Lee
  • 083 Limestone
  • 085 Lowndes
  • 087 Macon
  • 089 Madison
  • 091 Marengo
  • 093 Marion
  • 095 Marshall
  • 097 Mobile
  • 099 Monroe
  • 101 Montgomery
  • 103 Morgan
  • 105 Perry
  • 107 Pickens
  • 109 Pike
  • 111 Randolph
  • 113 Russell
  • 115 St. Clair
  • 117 Shelby
  • 119 Sumter
  • 121 Talladega
  • 123 Tallapoosa
  • 125 Tuscaloosa
  • 127 Walker
  • 129 Washington
  • 131 Wilcox
  • 133 Winston

02 ALASKA (AK)

Note: The official political units of Alaska are called boroughs. There are 10 organized boroughs and an unorganized borough. Unfortunately, for statistical purposes, the organized boroughs cover only a very small percentage of the land area of the state and have the further disadvantage of excluding military and Indian reservations which lie within their boundaries. Consequently, the unorganized borough is too large to provide a basis for suitable statistical analysis. For these reasons the boroughs are not usable for most statistical purposes.

The Census Bureau, in conjunction with the State of Alaska, has established Census Divisions for Alaska which provide a more effective basis for statistical purposes. The Census Divisions are stable geographic statistical areas with defined boundaries that encompass the entire state and generally comprise the election districts. The State of Alaska has requested that these Census Divisions be utilized for statistical purposes.

Two sets of codes are therefore provided for the geopolitical subdivisions of Alaska; namely, the Census Divisions and the Bureaus. The Census Division codes all have a zero in the lower order (last) position. Also listed next are the codes for the boroughs. These can be used in those applications having definite requirements to identify these political units. It should be noted that the low order position of these codes are other than the character zero. Also, the State of Alaska defines the Unorganized Borough to be the remainder of the State other than the 10 organized boroughs. Accordingly, those systems using this definition of the Unorganized Borough would code the military and Indian reservations as 999.

  • 01011 Aleutian Islands Division
  • 02011 Anchorage Division
  • 03011 Angoon Division
  • 04011 Barrow Division
  • 05011 Bethel Division
  • 06011 Bristol Bay Borough Division
  • 07011 Bristol Bay Division
  • 08011 Cardova-McCarthy Division
  • 09011 Fairbanks Division
  • 10011 Haines Division
  • 11011 Juneau Division
  • 12011 Kenai-Cook Inlet Division
  • 13011 Ketchikan Division
  • 14011 Kobuk Division
  • 15011 Kodiak Division
  • 16011 Kuskok Wim Division
  • 17011 Matanuska-Susitna Division
  • 18011 Nome Division
  • 19011 Outer Ketchikan Division
  • 20011 Prince of Wales Division
  • 21011 Seward Division
  • 22011 Sitka Division
  • 23011 Skagway-Yakutat Division
  • 24011 Southeast Fairbanks Division
  • 25011 Upper Yukon Division
  • 26011 Valdez-Chitina-Whittier Division
  • 27011 Wade Hampton Division
  • 28011 Wrangell-Petersburg Division
  • 29011 Yukon-Koyukuk Division
  • 80911 Bristol Bay Borough
  • 81811 Fairbanks North Star Borough
  • 82711 Greater Anchorage Area Borough
  • 83611 Greater Juneau Borough
  • 84511 Greater Sitka Borough
  • 85411 Haines Borough
  • 86311 Kenai Peninsula Borough
  • 87211 Ketchikan Gateway Borough
  • 88111 Kodiak Island Borough
  • 89111 Matanuska-Susitna Borough
  • 99911 Unorganized Borough

0101 Aleutian Islands Division through 9991, Unorganized Borough-Revised FIPS 6-1, June 15, 1970. Original codes assigned are listed below:

  • 001 Aleutian Islands Division
  • 003 Angoon Division
  • 005 Barrow Division
  • 007 Bethel Division
  • 009 Bristol Bay Borough
  • 011 Bristol Bay Division
  • 013 Cordova-McCarthy Division
  • 015 Gateway Borough
  • 017 Greater Anchorage Area Borough
  • 019 Greater Juneau Borough
  • 021 Greater Sitka Borough
  • 023 Kenai Peninsula Borough-NW
  • 025 Kenai Peninsula Borough-SE
  • 027 Kobuk Division
  • 029 Kodiak Island Borough
  • 031 Kuskokwim Division
  • 033 Lynn Canauicy Straits Division
  • 035 Matanuska-Susitna Borough
  • 037 Nome Division
  • 039 North Star Borough
  • 041 Outer Ketchikan Division
  • 043 Prince of Wales Division
  • 045 Southeast Fairbanks Division
  • 047 Upper Yukon Division
  • 049 Valdez-Chitina-Whittier Division
  • 051 Wade Hampton Division
  • 053 Wrangell-Petersburg Division
  • 055 Yukon-Koyukuk Division

04 ARIZONA (AZ)

  • 001 Apache
  • 003 Cochise
  • 005 Coconino
  • 007 Gila
  • 009 Graham
  • 011 Greenlee
  • 012 La Paz
  • 013 Maricopa
  • 015 Mohave
  • 017 Navajo
  • 019 Pima
  • 021 Pinal
  • 023 Santa Cruz
  • 025 Yavapai
  • 027 Yuma

05 ARKANSAS (AR)

  • 001 Arkansas
  • 003 Ashley
  • 005 Baxter
  • 007 Benton
  • 009 Boone
  • 011 Bradley
  • 013 Calhoun
  • 015 Carroll
  • 017 Chicot
  • 019 Clark
  • 021 Clay
  • 023 Cleburne
  • 025 Cleveland
  • 027 Columbia
  • 029 Conway
  • 031 Craighead
  • 033 Crawford
  • 035 Crittenden
  • 037 Cross
  • 039 Dallas
  • 041 Desha
  • 043 Drew
  • 045 Faulkner
  • 047 Franklin
  • 049 Fulton
  • 051 Garland
  • 053 Grant
  • 055 Greene
  • 057 Hempstead
  • 059 Hot Spring
  • 061 Howard
  • 063 Independence
  • 065 Izard
  • 067 Jackson
  • 069 Jefferson
  • 071 Johnson
  • 073 Lafayette
  • 075 Lawrence
  • 077 Lee
  • 079 Lincoln
  • 081 Little River
  • 083 Logan
  • 085 Lonoke
  • 087 Madison
  • 089 Marion
  • 091 MIller
  • 093 Mississippi
  • 095 Monroe
  • 097 Montgomery
  • 099 Nevada
  • 101 Newton
  • 103 Ouachita
  • 105 Perry
  • 107 Phillips
  • 109 Pike
  • 111 Poinsett
  • 113 Polk
  • 115 Pope
  • 117 Prairie
  • 119 Pulaski
  • 121 Randolph
  • 123 St. Francis
  • 125 Saline
  • 127 Scott
  • 129 Searcy
  • 131 Sebastien
  • 133 Sevier
  • 135 Sharp
  • 137 Stone
  • 139 Union
  • 141 Van Buren
  • 143 Washington
  • 145 White
  • 147 Woodruff
  • 149 Yell

06 CALIFORNIA (CA)

  • 001 Alameda
  • 003 Alpine
  • 005 Amador
  • 007 Butte
  • 009 Calaveras
  • 011 Colusa
  • 013 Contra Costa
  • 015 Del Norte
  • 017 El Dorado
  • 019 Fresno
  • 021 Glenn
  • 023 Humboldt
  • 025 Imperial
  • 027 Inyo
  • 029 Kern
  • 031 Kings
  • 033 Lake
  • 035 Lassen
  • 037 Los Angeles
  • 039 Madera
  • 041 Marin
  • 043 Mariposa
  • 045 Mendocino
  • 047 Merced
  • 049 Modoc
  • 051 Mono
  • 053 Monterey
  • 055 Napa
  • 057 Nevada
  • 059 Orange
  • 061 Placer
  • 063 Plumas
  • 065 Riverside
  • 067 Sacramento
  • 069 San Benito
  • 071 San Bernadino
  • 073 San Diego
  • 075 San Francisco
  • 077 San Joaquin
  • 079 San Luis Obispo
  • 081 San Mateo
  • 083 Santa Barbara
  • 085 Santa Clara
  • 087 Santa Cruz
  • 089 Shasta
  • 091 Sierra
  • 093 Siskiyou
  • 095 Solano
  • 097 Sonoma
  • 099 Stanislaus
  • 101 Sutter
  • 103 Tehama
  • 105 Trinity
  • 107 Tulare
  • 109 Tuolumne
  • 111 Ventura
  • 113 Yolo
  • 115 Yuba

08 COLORADO (CO)

  • 001 Adams
  • 003 Alamosa
  • 005 Arapahoe
  • 007 Archuleta
  • 009 Baca
  • 011 Bent
  • 013 Boulder
  • 015 Chaffee
  • 017 Cheyenne
  • 019 Clear Creek
  • 021 Conejos
  • 023 Constilla
  • 025 Crowley
  • 027 Custer
  • 029 Delta
  • 031 Denver
  • 033 Dolores
  • 035 Douglas
  • 037 Eagle
  • 039 Elbert
  • 041 El Paso
  • 043 Fremont
  • 045 Garfield
  • 047 Gilpin
  • 049 Grand
  • 051 Gunnison
  • 053 Hinsdale
  • 055 Huerfano
  • 057 Jackson
  • 059 Jefferson
  • 061 Kiowa
  • 063 Kit Carson
  • 065 Lake
  • 067 La Plata
  • 069 Larimer
  • 071 Las Animas
  • 073 Lincoln
  • 075 Logan
  • 077 Mesa
  • 079 Mineral
  • 081 Moffat
  • 083 Montezuma
  • 085 Montrose
  • 087 Morgan
  • 089 Otero
  • 091 Ouray
  • 093 Park
  • 095 Phillips
  • 097 Pitkin
  • 099 Prowers
  • 101 Pueblo
  • 103 Rio Blanco
  • 105 Rio Grande
  • 107 Routt
  • 109 Saguache
  • 111 San Juan
  • 113 San Miguel
  • 115 Sedgwick
  • 117 Summit
  • 119 Teller
  • 121 Washington
  • 123 Weld
  • 125 Yuma

09 CONNECTICUT (CT)

  • 001 Fairfield
  • 003 Hartford
  • 005 Litchfield
  • 007 Middlesex
  • 009 New Haven
  • 011 New London
  • 013 Tolland
  • 015 Windham

10 DELAWARE (DE)

  • 001 Kent
  • 003 New Castle
  • 005 Sussex

11 DISTRICT OF COLUMBIA (DC)

  • 001 District of Columbia

12 FLORIDA (FL)

  • 001 Alachua
  • 003 Baker
  • 005 Bay
  • 007 Bradford
  • 009 Brevard
  • 011 Broward
  • 013 Calhoun
  • 015 Charlotte
  • 017 Citrus
  • 019 Clay
  • 021 Collier
  • 023 Columbia
  • 025 Dade
  • 027 DeSoto
  • 029 Dixie
  • 031 Duval
  • 033 Escambia
  • 035 Flagler
  • 037 Franklin
  • 039 Gadsden
  • 041 Gilchrist
  • 043 Glades
  • 045 Gulf
  • 047 Hamilton
  • 049 Hardee
  • 051 Hendry
  • 053 Hernando
  • 055 Highlands
  • 057 Hillsborough
  • 059 Holmes
  • 061 Indian River
  • 063 Jackson
  • 065 Jefferson
  • 067 Lafayette
  • 069 Lake
  • 071 Lee
  • 073 Leon
  • 075 Levy
  • 077 Liberty
  • 079 Madison
  • 081 Manatee
  • 083 Marion
  • 085 Martin
  • 087 Monroe
  • 089 Nassau
  • 091 Okaloosa
  • 093 Okeechobee
  • 095 Orange
  • 097 Osceola
  • 099 Palm Beach
  • 101 Pasco
  • 103 Pinellas
  • 105 Polk
  • 107 Putnam
  • 109 St. Johns
  • 111 St. Lucie
  • 113 Santa Rosa
  • 115 Sarasota
  • 117 Seminole
  • 119 Sumter
  • 121 Suwannee
  • 123 Taylor
  • 125 Union
  • 127 Volusia
  • 129 Wakulla
  • 131 Walton
  • 133 Washington

13 GEORGIA (GA)

  • 001 Appling
  • 003 Atkinson
  • 005 Bacon
  • 007 Baker
  • 009 Baldwin
  • 011 Banks
  • 013 Barrow
  • 015 Bartow
  • 017 Ben Hill
  • 019 Berrien
  • 021 Bibb
  • 023 Bleckley
  • 025 Brantley
  • 027 Brooks
  • 029 Bryan
  • 031 Bulloch
  • 033 Burke
  • 035 Butts
  • 037 Calhoun
  • 039 Camden
  • 043 Candler
  • 045 Carroll
  • 047 Catoosa
  • 049 Charlton
  • 051 Chatham
  • 053 Chattahoochee
  • 055 Chattooga
  • 057 Cherokee
  • 059 Clarke
  • 061 Clay
  • 063 Clayton
  • 065 Clinch
  • 067 Cobb
  • 069 Coffee
  • 071 Cloquitt
  • 073 Columbia
  • 075 Cook
  • 077 Coweta
  • 079 Crawford
  • 081 Crisp
  • 083 Dade
  • 085 Dawson
  • 087 Decatur
  • 089 DeKalb
  • 091 Dodge
  • 093 Dooly
  • 095 Dougherty
  • 097 Douglas
  • 099 Early
  • 101 Echols
  • 103 Effingham
  • 105 Elbert
  • 107 Emanuel
  • 109 Evans
  • 111 Fannin
  • 113 Fayette
  • 115 Floyd
  • 117 Forsyth
  • 119 Franklin
  • 121 Fulton
  • 123 Gilmer
  • 125 Glascock
  • 127 Glynn
  • 129 Gordon
  • 131 Grady
  • 133 Greene
  • 135 Gwinnett
  • 137 Habersham
  • 139 Hall
  • 141 Hancock
  • 143 Haralson
  • 145 Harris
  • 147 Hart
  • 149 Heard
  • 151 Henry
  • 153 Houston
  • 155 Irwin
  • 157 Jackson
  • 159 Jasper
  • 161 Jeff Davis
  • 163 Jefferson
  • 165 Jenkins
  • 167 Johnson
  • 169 Jones
  • 171 Lamar
  • 173 Lanier
  • 175 Laurens
  • 177 Lee
  • 179 Liberty
  • 181 Lincoln
  • 183 Long
  • 185 Lowndes
  • 187 Lumpkin
  • 189 McDuffie
  • 191 McIntosh
  • 193 Macon
  • 195 Madison
  • 197 Marion
  • 199 Meriwether
  • 201 Miller
  • 205 Mitchell
  • 207 Monroe
  • 209 Montgomery
  • 211 Morgan
  • 213 Murray
  • 215 Muscogee
  • 217 Mewton
  • 219 Oconee
  • 221 Oglethorpe
  • 223 Paulding
  • 225 Peach
  • 227 Pickens
  • 229 Pierce
  • 231 Pike
  • 233 Polk
  • 235 Pulaski
  • 237 Putnam
  • 239 Quitman
  • 241 Rabun
  • 243 Randolph
  • 245 Richmond
  • 247 Rockdale
  • 249 Schley
  • 251 Screven
  • 253 Seminole
  • 255 Spalding
  • 257 Stephens
  • 259 Stewart
  • 261 Sumter
  • 263 Talbot
  • 265 Taliaferro
  • 267 Tattnall
  • 269 Taylor
  • 271 Telfair
  • 273 Terrell
  • 275 Thomas
  • 277 Tift
  • 279 Toombs
  • 281 Towns
  • 283 Treutlen
  • 285 Troup
  • 287 Turner
  • 289 Twiggs
  • 291 Union
  • 293 Upson
  • 295 Walker
  • 297 Walton
  • 299 Ware
  • 301 Warren
  • 303 Washington
  • 305 Wayne
  • 307 Webster
  • 309 Wheeler
  • 311 White
  • 313 Whitfield
  • 315 Wilcox
  • 317 Wilkes
  • 319 Wilkinson
  • 321 Worth

15 HAWAII (HI)

  • 001 Hawaii
  • 003 Honolulu
  • 005 Kalawao
  • 007 Kauai
  • 009 Maui

16 IDAHO (ID)

  • 001 Ada
  • 003 Adams
  • 005 Bannock
  • 007 Bear Lake
  • 009 Benewah
  • 011 Bingham
  • 013 Blaine
  • 015 Boise
  • 017 Bonner
  • 019 Bonneville
  • 021 Boundary
  • 023 Butte
  • 025 Camas
  • 027 Canyon
  • 029 Caribou
  • 031 Cassia
  • 033 Clark
  • 035 Clearwater
  • 037 Custer
  • 039 Elmore
  • 041 Franklin
  • 043 Fremont
  • 045 Gem
  • 047 Gooding
  • 049 Idaho
  • 051 Jefferson
  • 053 Jerome
  • 055 Kootenai
  • 057 Latah
  • 059 Lemhi
  • 061 Lewis
  • 063 Lincoln
  • 065 Madison
  • 067 Minidoka
  • 069 Nez Perce
  • 071 Oneida
  • 073 Pwyhee
  • 075 Payette
  • 077 Power
  • 079 Shoshone
  • 081 Teton
  • 083 Twin Falls
  • 085 Valley
  • 087 Washington

17 ILLINOIS (IL)

  • 001 Adams
  • 003 Alexander
  • 005 Bond
  • 007 Boone
  • 009 Brown
  • 011 Bureau
  • 013 Calhoun
  • 015 Carroll
  • 017 Cass
  • 019 Champaign
  • 021 Christian
  • 023 Clark
  • 025 Clay
  • 027 Clinton
  • 029 Coles
  • 031 Cook
  • 033 Crawford
  • 035 Cumberland
  • 037 DeKalb
  • 039 De Witt
  • 041 Douglas
  • 043 DuPage
  • 045 Edgar
  • 047 Edwards
  • 049 Effingham
  • 051 Fayette
  • 053 Ford
  • 055 Franklin
  • 057 Fulton
  • 059 Gallatin
  • 061 Greene
  • 063 Grundy
  • 065 Hamilton
  • 067 Hancock
  • 069 Hardin
  • 071 Henderson
  • 073 Henry
  • 075 Iroquois
  • 077 Jackson
  • 079 Jasper
  • 081 Jefferson
  • 083 Jersey
  • 085 Jo Daviess
  • 087 Johnson
  • 089 Kane
  • 091 Kankakee
  • 093 Kendall
  • 095 Knox
  • 097 Lake
  • 099 La Salle
  • 101 Lawrence
  • 103 Lee
  • 105 Livingston
  • 107 Logan
  • 109 McDonough
  • 111 McHenry
  • 113 McLean
  • 115 Macon
  • 117 Macoupin
  • 119 Madison
  • 121 Marion
  • 123 Marshall
  • 125 Mason
  • 127 Massac
  • 129 Menard
  • 131 Mercer
  • 133 Monroe
  • 135 Montgomery
  • 137 Morgan
  • 139 Moultrie
  • 141 Ogle
  • 143 Peoria
  • 145 Perry
  • 147 Piatt
  • 149 Pike
  • 151 Pope
  • 153 Pulaski
  • 155 Putnam
  • 157 Randolph
  • 159 Richland
  • 161 Rock Island
  • 163 St. Clair
  • 165 Saline
  • 167 Sangamon
  • 169 Schuyler
  • 171 Scott
  • 173 Shelby
  • 175 Stark
  • 177 Stephenson
  • 179 Tazewell
  • 181 Union
  • 183 Vermilion
  • 185 Wabash
  • 187 Warren
  • 189 Washington
  • 191 Wayne
  • 193 White
  • 195 Whiteside
  • 197 Will
  • 199 Williamson
  • 201 Winnebago
  • 203 Woodford

18 INDIANA (IN)

  • 001 Adams
  • 003 Allen
  • 005 Bartholomew
  • 007 Benton
  • 009 Blackford
  • 011 Boone
  • 013 Brown
  • 015 Carroll
  • 017 Cass
  • 019 Clark
  • 021 Clay
  • 023 Clinton
  • 025 Crawford
  • 027 Daviess
  • 029 Dearborn
  • 031 Decatur
  • 033 De Kalb
  • 035 Delaware
  • 037 Dubois
  • 039 Elkhart
  • 041 Fayette
  • 043 Floyd
  • 045 Fountain
  • 047 Franklin
  • 049 Fulton
  • 051 Gibson
  • 053 Grant
  • 055 Greene
  • 057 Hamilton
  • 059 Hancock
  • 061 Harrison
  • 063 Hendricks
  • 065 Henry
  • 067 Howard
  • 069 Huntington
  • 071 Jackson
  • 073 Jasper
  • 075 Jay
  • 077 Jefferson
  • 079 Jennings
  • 081 Johnson
  • 083 Knox
  • 085 Kosciusko
  • 087 Lagrange
  • 089 Lake
  • 091 La Porte
  • 093 Lawrence
  • 095 Madison
  • 097 Marion
  • 099 Marshall
  • 101 Martin
  • 103 Miami
  • 105 Monre
  • 107 Montgomery
  • 109 Morgan
  • 111 Newton
  • 113 Noble
  • 115 Ohio
  • 117 Orange
  • 119 Owen
  • 121 Parke
  • 123 Perry
  • 125 Pike
  • 127 Porter
  • 129 Posey
  • 131 Pulaski
  • 133 Putnam
  • 135 Randolph
  • 137 Ripley
  • 139 Rush
  • 141 St. Joseph
  • 143 Scott
  • 145 Shelby
  • 147 Spencer
  • 149 Starke
  • 151 Steuben
  • 153 Sullivan
  • 155 Switzerland
  • 157 Tippecanoe
  • 159 Tipton
  • 161 Union
  • 163 Vanderburgh
  • 165 Vermilion
  • 167 Vigo
  • 169 Wabash
  • 171 Warren
  • 173 Warrick
  • 175 Washington
  • 177 Wayne
  • 179 Wells
  • 181 White
  • 183 Whitley

19 IOWA (IA)

  • 001 Adair
  • 003 Adams
  • 005 Allamakee
  • 007 Appanoose
  • 009 Audobon
  • 011 Benton
  • 013 Black Hawk
  • 015 Boone
  • 017 Bremer
  • 019 Buchanan
  • 021 Buena Vista
  • 023 Butler
  • 025 Calhoun
  • 027 Carroll
  • 029 Cass
  • 031 Cedar
  • 033 Cerro Gordo
  • 035 Cherokee
  • 037 Chickasaw
  • 039 Clarke
  • 041 Clay
  • 043 Clayton
  • 045 Clinton
  • 047 Crawford
  • 049 Dallas
  • 051 Davis
  • 053 Decatur
  • 055 Delaware
  • 057 Des Moines
  • 059 Dickinson
  • 061 Dubuque
  • 063 Emmet
  • 065 Fayette
  • 067 Floyd
  • 069 Franklin
  • 071 Fremont
  • 073 Greene
  • 075 Grundy
  • 077 Guthrie
  • 079 Hamilton
  • 081 Hancock
  • 083 Hardin
  • 085 Harrison
  • 087 Henry
  • 089 Howard
  • 091 Humboldt
  • 093 Ida
  • 095 Iowa
  • 097 Jackson
  • 099 Jasper
  • 101 Jefferson
  • 103 Johnson
  • 105 Jones
  • 107 Keokuk
  • 109 Kossuth
  • 111 Lee
  • 113 Linn
  • 115 Louisa
  • 117 Lucas
  • 119 Lyon
  • 121 Madison
  • 123 Mahaska
  • 125 Marion
  • 127 Marshall
  • 129 Mills
  • 131 Mitchell
  • 133 Monona
  • 135 Monroe
  • 137 Montgomery
  • 139 Muscatine
  • 141 O'Brien
  • 143 Osceola
  • 145 Page
  • 147 Palo Alto
  • 149 Plymouth
  • 151 Pocahontas
  • 153 Polk
  • 155 Pottawattamie
  • 157 Poweshiek
  • 159 Ringgold
  • 161 Sac
  • 163 Scott
  • 165 Shelby
  • 167 Sioux
  • 169 Story
  • 171 Tama
  • 173 Taylor
  • 175 Union
  • 177 Van Buren
  • 179 Wapello
  • 181 Warren
  • 183 Washington
  • 185 Wayne
  • 187 Webster
  • 189 Winnebago
  • 191 Winneshiek
  • 193 Woodbury
  • 195 Worth
  • 197 Wright

20 KANSAS (KS)

  • 001 Allen
  • 003 Anderson
  • 005 Atchinson
  • 007 Barber
  • 009 Barton
  • 011 Bourbon
  • 013 Brown
  • 015 Butler
  • 017 Chase
  • 019 Chautauqua
  • 021 Cherokee
  • 023 Cheyenne
  • 025 Clark
  • 027 Clay
  • 029 Cloud
  • 031 Coffey
  • 033 Comanche
  • 035 Cowley
  • 037 Crawford
  • 039 Decatur
  • 041 Dickinson
  • 043 Doniphan
  • 045 Douglas
  • 047 Edwards
  • 049 Elk
  • 051 Ellis
  • 053 Ellsworth
  • 055 Finney
  • 057 Ford
  • 059 Franklin
  • 061 Geary
  • 063 Gove
  • 065 Graham
  • 067 Grant
  • 069 Gray
  • 071 Greeley
  • 073 Greenwood
  • 075 Hamilton
  • 077 Harper
  • 079 Harvey
  • 081 Haskell
  • 083 Hodgeman
  • 085 Jackson
  • 087 Jefferson
  • 089 Jewell
  • 091 Johnson
  • 093 Kearney
  • 095 Kingman
  • 097 Kiowa
  • 099 Labette
  • 101 Lane
  • 103 Leavenworth
  • 105 Lincoln
  • 107 Linn
  • 109 Logan
  • 111 Lyon
  • 113 McPherson
  • 115 Marion
  • 117 Marshall
  • 119 Meade
  • 121 Miami
  • 123 Mitchell
  • 125 Montgomery
  • 127 Morris
  • 129 Morton
  • 131 Nemaha
  • 133 Neosho
  • 135 Ness
  • 137 Norton
  • 139 Osage
  • 141 Osborne
  • 143 Ottawa
  • 145 Pawnee
  • 147 Phillips
  • 149 Pottawatomie
  • 151 Pratt
  • 153 Rawlins
  • 155 Reno
  • 157 Republic
  • 159 Rice
  • 161 Riley
  • 163 Rooks
  • 165 Rush
  • 167 Russell
  • 169 Saline
  • 171 Scott
  • 173 Sedgwick
  • 175 Seward
  • 177 Shawnee
  • 179 Sheridan
  • 181 Sherman
  • 183 Smith
  • 185 Stafford
  • 187 Stanton
  • 189 Stevens
  • 191 Sumner
  • 193 Thomas
  • 195 Trego
  • 197 Wabaunsee
  • 199 Wallace
  • 201 Washington
  • 203 Wichita
  • 205 Wilson
  • 207 Woodson
  • 209 Wyandotte

21 KENTUCKY (KY)

  • 001 Adair
  • 003 Allen
  • 005 Anderson
  • 007 Ballard
  • 009 Barren
  • 011 Bath
  • 013 Bell
  • 015 Boone
  • 017 Bourbon
  • 019 Boyd
  • 021 Boyle
  • 023 Bracken
  • 025 Breathitt
  • 027 Breckinridge
  • 029 Bullitt
  • 031 Butler
  • 033 Caldwell
  • 035 Calloway
  • 037 Campbell
  • 039 Carlisle
  • 041 Carroll
  • 043 Carter
  • 045 Casey
  • 047 Christian
  • 049 Clark
  • 051 Clay
  • 053 Clinton
  • 055 Crittenden
  • 057 Cumberland
  • 059 Daviess
  • 061 Edmonson
  • 063 Elliott
  • 065 Estill
  • 067 Fayette
  • 069 Fleming
  • 071 Floyd
  • 073 Franklin
  • 075 Fulton
  • 077 Gallatin
  • 079 Garrard
  • 081 Grant
  • 083 Graves
  • 085 Grayson
  • 087 Green
  • 089 Greenup
  • 091 Hancock
  • 093 Hardin
  • 095 Harlan
  • 097 Harrison
  • 099 Hart
  • 101 Henderson
  • 103 Henry
  • 105 Hickman
  • 107 Hopkins
  • 109 Jackson
  • 111 Jefferson
  • 113 Jessamine
  • 115 Johnson
  • 117 Kenton
  • 119 Knott
  • 121 Knox
  • 123 Larue
  • 125 Laurel
  • 127 Lawrence
  • 129 Lee
  • 131 Leslie
  • 133 Letcher
  • 135 Lewis
  • 137 Lincoln
  • 139 Livingston
  • 141 Logan
  • 143 Lyon
  • 145 McCracken
  • 147 McCreary
  • 149 McLean
  • 151 Madison
  • 153 Magoffin
  • 155 Marion
  • 157 Marshall
  • 159 Martin
  • 161 Mason
  • 163 Meade
  • 165 Menifee
  • 167 Mercer
  • 169 Metcalfe
  • 171 Monroe
  • 173 Montgomery
  • 175 Morgan
  • 177 Muhlenberg
  • 179 Nelson
  • 181 Nicholas
  • 183 Ohio
  • 185 Oldham
  • 187 Owen
  • 189 Owsley
  • 191 Pendleton
  • 193 Perry
  • 195 Pike
  • 197 Powell
  • 199 Pulaski
  • 201 Robertson
  • 203 Rockcastle
  • 205 Rowan
  • 207 Russell
  • 209 Scott
  • 211 Shelby
  • 213 Simpson
  • 215 Spencer
  • 217 Taylor
  • 219 Todd
  • 221 Trigg
  • 223 Trimble
  • 225 Union
  • 227 Warren
  • 229 Washington
  • 231 Wayne
  • 233 Webster
  • 235 Whitley
  • 237 Wolfe
  • 239 Woodard

22 LOUISIANA (LA)

  • 001 Acadia
  • 003 Allen
  • 005 Ascension
  • 007 Assumption
  • 009 Avoyelles
  • 011 Beauregard
  • 013 Bienville
  • 015 Bossier
  • 017 Caddo
  • 019 Calcasieu
  • 021 Caldwell
  • 023 Cameron
  • 025 Catahoula
  • 027 Claiborne
  • 029 Concordia
  • 031 De Soto
  • 033 East Baton Rouge
  • 035 East Carroll
  • 037 East Feliciana
  • 039 Evangeline
  • 041 Franklin
  • 043 Grant
  • 045 Iberia
  • 047 Iberville
  • 049 Jackson
  • 051 Jefferson
  • 053 Jefferson Davis
  • 055 Lafayette
  • 057 Lafourche
  • 059 La Salle
  • 061 Lincoln
  • 063 Livingston
  • 065 Madison
  • 067 Morehouse
  • 069 Natchitoches
  • 071 Orleans
  • 073 Ouachita
  • 075 Plaquemines
  • 077 Pointe Coupee
  • 079 Rapides
  • 081 Red River
  • 083 Richland
  • 085 Sabine
  • 087 St. Bernard
  • 089 St. Charles
  • 091 St. Helena
  • 093 St. James
  • 095 St. John the Baptist
  • 097 St. Landry
  • 099 St. Martin
  • 101 St. Mary
  • 103 St. Tammany
  • 105 Tangipahoa
  • 107 Tensas
  • 109 Terrebonne
  • 111 Union
  • 113 Vermilion
  • 115 Vernon
  • 117 Washington
  • 119 Webster
  • 121 West Baton Rouge
  • 123 West Carroll
  • 125 West Feliciana
  • 127 Winn

23 MAINE (ME)

  • 001 Androscoggin
  • 003 Aroostook
  • 005 Cumberland
  • 007 Franklin
  • 009 Hancock
  • 011 Kennebec
  • 013 Knox
  • 015 Lincoln
  • 017 Oxford
  • 019 Penobscot
  • 021 Piscataquis
  • 023 Sagadahoc
  • 025 Somerset
  • 027 Waldo
  • 029 Washington
  • 031 York

24 MARYLAND (MD)

  • 001 Alleghany
  • 003 Anne Arundel
  • 005 Baltimore
  • 009 Calvert
  • 011 Caroline
  • 013 Carroll
  • 015 Cecil
  • 017 Charles
  • 019 Dorchester
  • 021 Frederick
  • 023 Garrett
  • 025 Harford
  • 027 Howard
  • 029 Kent
  • 031 Montgomery
  • 033 Prince George's
  • 035 Queen Anne's
  • 037 St. Mary's
  • 039 Somerset
  • 041 Talbot
  • 043 Washington
  • 045 Wicomico
  • 047 Worcester
  • 510 Baltimore City

25 MASSACHUSETTS (MA)

  • 001 Barnstable
  • 003 Berkshire
  • 005 Bristol
  • 007 Dukes
  • 009 Essex
  • 011 Franklin
  • 013 Hampden
  • 015 Hampshire
  • 017 Middlesex
  • 019 Nantucket
  • 021 Norfolk
  • 023 Plymouth
  • 025 Suffolk
  • 027 Worcester

26 MICHIGAN (MI)

  • 001 Alcona
  • 003 Alger
  • 005 Allegan
  • 007 Alpena
  • 009 Antrim
  • 011 Arenac
  • 013 Baraga
  • 015 Barry
  • 017 Bay
  • 019 Benzie
  • 021 Berrien
  • 023 Branch
  • 025 Calhoun
  • 027 Cass
  • 029 Charlevoix
  • 031 Cheboygan
  • 033 Chippewa
  • 035 Clare
  • 037 Clinton
  • 039 Crawford
  • 041 Delta
  • 043 Dickinson
  • 045 Eaton
  • 047 Emmet
  • 049 Genesee
  • 051 Gladwin
  • 053 Gogebic
  • 055 Grand Traverse
  • 057 Gratiot
  • 059 Hillsdale
  • 061 Houghton
  • 063 Huron
  • 065 Ingham
  • 067 Ionia
  • 069 Iosca
  • 071 Iron
  • 073 Isabella
  • 075 Jackson
  • 077 Kalamazoo
  • 079 Kalkaska
  • 081 Kent
  • 083 Keweenaw
  • 085 Lake
  • 087 Lapeer
  • 089 Leelanau
  • 091 Lenawee
  • 093 Livingston
  • 095 Luce
  • 097 Mackinac
  • 099 Macomb
  • 101 Manistee
  • 103 Marquette
  • 105 Mason
  • 107 Mecosta
  • 109 Menominee
  • 111 Midland
  • 113 Missaukee
  • 115 Monroe
  • 117 Montcalm
  • 119 Montmorency
  • 121 Muskegon
  • 123 Newaygo
  • 125 Oakland
  • 127 Oceana
  • 129 Ogemaw
  • 131 Ontonagon
  • 133 Osceola
  • 135 Oscoda
  • 137 Otsego
  • 139 Ottawa
  • 141 Presque Isle
  • 143 Roscommon
  • 145 Saginaw
  • 147 St. Clair
  • 149 St. Joseph
  • 151 Sanilac
  • 153 Schoolcraft
  • 155 Shiawassee
  • 157 Tuscola
  • 159 Van Buren
  • 161 Washtenaw
  • 163 Wayne
  • 165 Wexford

27 MINNESOTA (MN)

  • 001 Aitkin
  • 003 Anoka
  • 005 Becker
  • 007 Beltrami
  • 009 Benton
  • 011 Big Stone
  • 013 Blue Earth
  • 015 Brown
  • 017 Carlton
  • 019 Carver
  • 021 Cass
  • 023 Chippewa
  • 025 Chisago
  • 027 Clay
  • 029 Clearwater
  • 031 Cook
  • 033 Cottonwood
  • 035 Crow Wing
  • 037 Dakota
  • 039 Dodge
  • 041 Douglas
  • 043 Faribault
  • 045 Fillmore
  • 047 Freeborn
  • 049 Goodhue
  • 051 Grant
  • 053 Hennepin
  • 055 Houston
  • 057 Hubbard
  • 059 Isanti
  • 061 Itasca
  • 063 Jackson
  • 065 Kanabec
  • 067 Kandiyohi
  • 069 Kittson
  • 071 Koochiching
  • 073 Lac qui Parle
  • 075 Lake
  • 077 Lake of the Woods
  • 079 Le Sueur
  • 081 Lincoln
  • 083 Lyon
  • 085 McLeod
  • 087 Mahnomen
  • 089 Marshall
  • 091 Martin
  • 093 Meeker
  • 095 Mille Lacs
  • 097 Morrison
  • 099 Mower
  • 101 Murray
  • 103 Nicollet
  • 105 Nobles
  • 107 Norman
  • 109 Olmsted
  • 111 Otter Tail
  • 113 Pennington
  • 115 Pine
  • 117 Pipestone
  • 119 Polk
  • 121 Pope
  • 123 Ramsey
  • 125 Red Lake
  • 127 Redwood
  • 129 Renville
  • 131 Rice
  • 133 Rock
  • 135 Roseau
  • 137 St. Louis
  • 139 Scott
  • 141 Sherburne
  • 143 Sibley
  • 145 Stearns
  • 147 Steele
  • 149 Stevens
  • 151 Swift
  • 153 Todd
  • 155 Traverse
  • 157 Wabasha
  • 159 Wadena
  • 161 Waseca
  • 163 Washington
  • 165 Watonwan
  • 167 Wilkin
  • 169 Winona
  • 171 Wright
  • 173 Yellow Medicine

28 MISSISSIPPI (MS)

  • 001 Adams
  • 003 Alcorn
  • 005 Amite
  • 007 Attala
  • 009 Benton
  • 011 Bolivar
  • 013 Calhoun
  • 015 Carroll
  • 017 Chickasaw
  • 019 Choctaw
  • 021 Clairborne
  • 023 Clarke
  • 025 Clay
  • 027 Coahoma
  • 029 Copiah
  • 031 Covington
  • 033 DeSoto
  • 035 Forrest
  • 037 Franklin
  • 039 George
  • 041 Greene
  • 043 Grenada
  • 045 Hancock
  • 047 Harrison
  • 049 Hinds
  • 051 Holmes
  • 053 Humphreys
  • 055 Issaquena
  • 057 Itawamba
  • 059 Jackson
  • 061 Jasper
  • 063 Jefferson
  • 065 Jefferson Davis
  • 067 Jones
  • 069 Kemper
  • 071 Lafayette
  • 073 Lamar
  • 075 Lauderdale
  • 077 Lawrence
  • 079 Leake
  • 081 Lee
  • 083 Leflore
  • 085 Lincoln
  • 087 Lowndes
  • 089 Madison
  • 091 Marion
  • 093 Marshall
  • 095 Monroe
  • 097 Montgomery
  • 099 Neshoba
  • 101 Newton
  • 103 Noxubee
  • 105 Oktibbeha
  • 107 Panola
  • 109 Pearl River
  • 111 Perry
  • 113 Pike
  • 115 Pontotoc
  • 117 Prentiss
  • 119 Quitman
  • 121 Rankin
  • 123 Scott
  • 125 Sharkey
  • 127 Simpson
  • 129 Smith
  • 131 Stone
  • 133 Sunflower
  • 135 Tallahatchie
  • 137 Tate
  • 139 Tippah
  • 141 Tishomingo
  • 143 Tunica
  • 145 Union
  • 147 Walthall
  • 149 Warreb
  • 151 Washington
  • 153 Wayne
  • 155 Webster
  • 157 Wilkinson
  • 159 Winston
  • 161 Yalobusha
  • 163 Yazoo

29 MISSOURI (MO)

  • 001 Aitkin
  • 003 Anoka
  • 005 Becker
  • 007 Beltrami
  • 009 Benton
  • 011 Big Stone
  • 013 Blue Earth
  • 015 Brown
  • 017 Carlton
  • 019 Carver
  • 021 Cass
  • 023 Chippewa
  • 025 Chisago
  • 027 Clay
  • 029 Clearwater
  • 031 Cook
  • 033 Cottonwood
  • 035 Crow Wing
  • 037 Dakota
  • 039 Dodge
  • 041 Douglas
  • 043 Faribault
  • 045 Fillmore
  • 047 Freeborn
  • 049 Goodhue
  • 051 Grant
  • 053 Hennepin
  • 055 Houston
  • 057 Hubbard
  • 059 Isanti
  • 061 Itasca
  • 063 Jackson
  • 065 Kanabec
  • 067 Kandiyohi
  • 069 Kittson
  • 071 Koochiching
  • 073 Lac qui Parle
  • 075 Lake
  • 077 Lake of the Woods
  • 079 Le Sueur
  • 081 Lincoln
  • 083 Lyon
  • 085 McLeod
  • 087 Mahnomen
  • 089 Marshall
  • 091 Martin
  • 093 Meeker
  • 095 Mille Lacs
  • 097 Morrison
  • 099 Mower
  • 101 Murray
  • 103 Nicollet
  • 105 Nobles
  • 107 Norman
  • 109 Olmsted
  • 111 Otter Tail
  • 113 Pennington
  • 115 Pine
  • 117 Pipestone
  • 119 Polk
  • 121 Pope
  • 123 Ramsey
  • 125 Red Lake
  • 127 Redwood
  • 129 Renville
  • 131 Rice
  • 133 Rock
  • 135 Roseau
  • 137 St. Louis
  • 139 Scott
  • 141 Sherburne
  • 143 Sibley
  • 145 Stearns
  • 147 Steele
  • 149 Stevens
  • 151 Swift
  • 153 Todd
  • 155 Traverse
  • 157 Wabasha
  • 159 Wadena
  • 161 Waseca
  • 163 Washington
  • 165 Watonwan
  • 167 Wilkin
  • 169 Winona
  • 171 Wright
  • 173 Yellow Medicine

30 MONTANA (MT)

  • 001 Beaverhead
  • 003 Big Horn
  • 005 Blaine
  • 007 Broadwater
  • 009 Carbon
  • 011 Carter
  • 013 Cascade
  • 015 Chouteau
  • 017 Custer
  • 019 Daniels
  • 021 Dawson
  • 023 Deer Lodge
  • 025 Fallon
  • 027 Fergus
  • 029 Flathead
  • 031 Gallatin
  • 033 Garfield
  • 035 Glacier
  • 037 Golden Valley
  • 039 Granite
  • 041 Hill
  • 043 Jefferson
  • 045 Judith Basin
  • 047 Lake
  • 049 Lewis and Clark
  • 051 Liberty
  • 053 Lincoln
  • 055 McCone
  • 057 Madison
  • 059 Meagher
  • 061 Mineral
  • 063 Missoula
  • 065 Musselshell
  • 067 Park
  • 069 Petroleum
  • 071 Phillips
  • 073 Pondera
  • 075 Powder River
  • 077 Powell
  • 079 Prairie
  • 081 Ravalli
  • 083 Richland
  • 085 Roosevelt
  • 087 Rosebud
  • 089 Sanders
  • 091 Sheridan
  • 093 Silver Bow
  • 095 Stillwater
  • 097 Sweet Grass
  • 099 Teton
  • 101 Toole
  • 103 Treasure
  • 105 Valley
  • 107 Wheatland
  • 109 Wibaux
  • 111 Yellowstone
  • 113 Yellowstone National Park

Nebraska through Wyoming with County Codes

31 NEBRASKA (NE)

  • 001 Adams
  • 003 Antelope
  • 005 Arthur
  • 007 Banner
  • 009 Blaine
  • 011 Boone
  • 013 Box Butte
  • 015 Boyd
  • 017 Brown
  • 019 Buffalo
  • 021 Burt
  • 023 Butler
  • 025 Cass
  • 027 Cedar
  • 029 Chase
  • 031 Cherry
  • 033 Cheyenne
  • 035 Clay
  • 037 Colfax
  • 039 Cuming
  • 041 Custer
  • 043 Dakota
  • 045 Dawes
  • 047 Dawson
  • 049 Deuel
  • 051 Dixon
  • 053 Dodge
  • 055 Douglas
  • 057 Dundy
  • 059 Fillmore
  • 061 Franklin
  • 063 Frontier
  • 065 Furnas
  • 067 Gage
  • 069 Garden
  • 071 Garfield
  • 073 Gosper
  • 075 Grant
  • 077 Greeley
  • 079 Hall
  • 081 Hamilton
  • 083 Harlan
  • 085 Hayes
  • 087 Hitchcock
  • 089 Holt
  • 091 Hooker
  • 093 Howard
  • 095 Jefferson
  • 097 Johnson
  • 099 Kearney
  • 101 Keith
  • 103 Keya Paha
  • 105 Kimball
  • 107 Knox
  • 109 Lancaster
  • 111 Lincoln
  • 113 Logan
  • 115 Loup
  • 117 McPherson
  • 119 Madison
  • 121 Merrick
  • 123 Morrill
  • 125 Nance
  • 127 Nemaha
  • 129 Nucktolls
  • 131 Otoe
  • 133 Pawnee
  • 135 Perkins
  • 137 Phelps
  • 139 Pierce
  • 141 Platte
  • 143 Polk
  • 145 Red Willow
  • 147 Richardson
  • 149 Rock
  • 151 Saline
  • 153 Sarpy
  • 155 Saunders
  • 157 Scotts Bluff
  • 159 Seward
  • 161 Sheridan
  • 163 Sherman
  • 165 Sioux
  • 167 Stanton
  • 169 Thayer
  • 171 Thomas
  • 173 Thurston
  • 175 Valley
  • 177 Washington
  • 179 Wayne
  • 181 Webster
  • 183 Wheeler
  • 185 York

32 NEVADA (NV)

  • 001 Churchill
  • 003 Clark
  • 005 Douglas
  • 007 Elko
  • 009 Esmerelda
  • 013 Humboldt
  • 015 Lander
  • 017 Lincoln
  • 019 Lyon
  • 021 Mineral
  • 0251
  • 027 Pershing
  • 029 Storey
  • 031 Washoe
  • 033 White Pine
  • 5101 Carson City

0251 and 5101 Carson City, Revised FIPS 6-1, June 15, 1970
Code 025 was previously assigned to Ormsby County which has been incorporated as the independent city of Carson City.

33 NEW HAMPSHIRE (NH)

  • 001 Belknap
  • 003 Carroll
  • 005 Chesire
  • 007 Coos
  • 009 Grafton
  • 011 Hillsborough
  • 013 Merrimack
  • 015 Rockingham
  • 017 Strafford
  • 019 Sullivan

0111 Hillsborough, Revised FIPS 6-1, June 15, 1970. May also be spelled "Hillsboro."

34 NEW JERSEY (NJ)

  • 001 Atlantic
  • 003 Bergen
  • 005 Burlington
  • 007 Camden
  • 009 Cape May
  • 011 Cumberland
  • 013 Essex
  • 015 Gloucester
  • 017 Hudson
  • 019 Hunterdon
  • 021 Mercer
  • 023 Middlesex
  • 025 Monmouth
  • 027 Morris
  • 029 Ocean
  • 031 Passaic
  • 033 Salem
  • 035 Somerset
  • 037 Sussex
  • 039 Union
  • 041 Warren

35 NEW MEXICO (NM)

  • 001 Bernalillo
  • 003 Catron
  • 005 Chaves
  • 006 Cibola
  • 007 Colfax
  • 009 Curry
  • 011 DeBaca
  • 013 Dona Ana
  • 015 Eddy
  • 017 Grant
  • 019 Guadelupe
  • 021 Harding
  • 023 Hidalgo
  • 025 Lea
  • 027 Lincoln
  • 028 Los Alamos
  • 029 Luna
  • 031 McKinley
  • 033 More
  • 035 Otero
  • 037 Quay
  • 039 Rio Arriba
  • 041 Roosevelt
  • 043 Sandoval
  • 045 San Juan
  • 047 San Miguel
  • 049 Santa Fe
  • 051 Sierra
  • 053 Socorro
  • 055 Taos
  • 057 Torrance
  • 059 Union
  • 061 Valencia

36 NEW YORK (NY)

  • 001 Albany
  • 003 Alleghany
  • 005 Bronx
  • 007 Broome
  • 009 Cattaraugus
  • 011 Cayuga
  • 013 Chautauqua
  • 015 Chemung
  • 017 Chenango
  • 019 Clinton
  • 021 Columbia
  • 023 Cortland
  • 025 Delaware
  • 027 Dutchess
  • 029 Erie
  • 031 Essex
  • 033 Franklin
  • 035 Fulton
  • 037 Genesee
  • 039 Greene
  • 041 Hamilton
  • 043 Herkimer
  • 045 Jefferson
  • 047 Kings
  • 049 Lewis
  • 051 Livingston
  • 053 Madison
  • 055 Monroe
  • 057 Montgomery
  • 059 Nassau
  • 061 New York
  • 063 Niagara
  • 065 Oneida
  • 067 Onondaga
  • 069 Ontario
  • 071 Orange
  • 073 Orleans
  • 075 Oswego
  • 077 Otsego
  • 079 Putnam
  • 081 Queens
  • 083 Rensselaer
  • 085 Richmond
  • 087 Rockland
  • 089 St. Lawrence
  • 091 Saratoga
  • 093 Schenectady
  • 095 Schoharie
  • 097 Schuyler
  • 099 Seneca
  • 101 Steuben
  • 103 Suffolk
  • 105 Sullivan
  • 107 Tioga
  • 109 Tompkins
  • 111 Ulster
  • 113 Warren
  • 115 Washington
  • 117 Wayne
  • 119 Westchester
  • 121 Wyoming
  • 123 Yates

37 NORTH CAROLINA (NC)

  • 001 Alamance
  • 003 Alexander
  • 005 Alleghany
  • 007 Anson
  • 009 Ashe
  • 011 Avery
  • 013 Beaufort
  • 015 Bertie
  • 017 Bladen
  • 019 Brunswick
  • 021 Buncombe
  • 023 Burke
  • 025 Cabarrus
  • 027 Caldwell
  • 029 Camden
  • 031 Carteret
  • 033 Caswell
  • 035 Catawba
  • 037 Chatham
  • 039 Cherokee
  • 041 Chowan
  • 043 Clay
  • 045 Cleveland
  • 047 Columbus
  • 049 Craven
  • 051 Cumberland
  • 053 Currituck
  • 055 Dare
  • 057 Davidson
  • 059 Davie
  • 061 Duplin
  • 063 Durham
  • 065 Edgecombe
  • 067 Forsyth
  • 069 Franklin
  • 071 Gaston
  • 073 Gates
  • 075 Graham
  • 077 Granville
  • 079 Greene
  • 081 Guilford
  • 083 Halifax
  • 085 Harnett
  • 087 Haywood
  • 089 Henderson
  • 091 Hertford
  • 093 Hoke
  • 095 Hyde
  • 097 Iredell
  • 099 Jackson
  • 101 Johnston
  • 103 Jones
  • 105 Lee
  • 107 Lenoir
  • 109 Lincoln
  • 111 McDowell
  • 113 Macon
  • 115 Madison
  • 117 Martin
  • 119 Mecklenburg
  • 121 Mitchell
  • 123 Montgomery
  • 125 Moore
  • 127 Nash
  • 129 New Hanover
  • 131 Northampton
  • 133 Onslow
  • 135 Orange
  • 137 Pamlico
  • 139 Pasquotank
  • 141 Pender
  • 143 Perquimans
  • 145 Person
  • 147 Pitt
  • 149 Polk
  • 151 Randolph
  • 153 Richmond
  • 155 Robeson
  • 157 Rockingham
  • 159 Rowan
  • 161 Rutherford
  • 163 Sampson
  • 165 Scotland
  • 167 Stanly
  • 169 Stokes
  • 171 Surry
  • 173 Swain
  • 175 Transylvania
  • 177 Tyrrell
  • 179 Union
  • 181 Vance
  • 183 Wake
  • 185 Warren
  • 187 Washington
  • 189 Watauga
  • 191 Wayne
  • 193 Wilkes
  • 195 Wilson
  • 197 Yadkin
  • 199 Yancey

38 NORTH DAKOTA (ND)

  • 001 Adams
  • 003 Barnes
  • 005 Benson
  • 007 Billings
  • 009 Bottineau
  • 011 Bowman
  • 013 Burke
  • 015 Burleigh
  • 017 Cass
  • 019 Cavalier
  • 021 Dickey
  • 023 Divide
  • 025 Dunn
  • 027 Eddy
  • 029 Emmons
  • 031 Foster
  • 033 Golden Valley
  • 035 Grand Forks
  • 037 Grant
  • 039 Griggs
  • 041 Hettinger
  • 043 Kidder
  • 045 LaMoure
  • 047 Logan
  • 049 McHenry
  • 051 McIntosh
  • 053 McKenzie
  • 055 McLean
  • 057 Mercer
  • 059 Morton
  • 061 Mountrail
  • 063 Nelson
  • 065 Oliver
  • 067 Pembina
  • 069 Pierce
  • 071 Ramsey
  • 073 Ransom
  • 075 Renville
  • 077 Richland
  • 079 Rolette
  • 081 Sargent
  • 083 Sheridan
  • 085 Sioux
  • 087 Slope
  • 089 Stark
  • 091 Steele
  • 093 Stutsman
  • 095 Towner
  • 097 Traill
  • 099 Walsh
  • 101 Ward
  • 103 Wells
  • 105 Williams

39 OHIO (OH)

  • 003 Allen
  • 005 Ashland
  • 007 Ashtabula
  • 009 Athens
  • 01 Adams
  • 011 Auglaize
  • 013 Belmont
  • 015 Brown
  • 017 Butler
  • 019 Carroll
  • 021 Champaign
  • 023 Clark
  • 025 Clermont
  • 027 Clinton
  • 029 Columbiana
  • 031 Coshocton
  • 033 Crawford
  • 035 Cuyahoga
  • 037 Darke
  • 039 Defiance
  • 041 Delaware
  • 043 Erie
  • 045 Fairfield
  • 047 Fayette
  • 049 Franklin
  • 051 Fulton
  • 053 Gallia
  • 055 Geauga
  • 057 Greene
  • 059 Guernsey
  • 061 Hamilton
  • 063 Hancock
  • 065 Hardin
  • 067 Harrison
  • 069 Henry
  • 071 Highland
  • 073 Hocking
  • 075 Holmes
  • 077 Huron
  • 079 Jackson
  • 081 Jefferson
  • 083 Knox
  • 085 Lake
  • 087 Lawrence
  • 089 Licking
  • 091 Logan
  • 093 Lorain
  • 095 Lucas
  • 097 Madison
  • 099 Mahoning
  • 101 Marion
  • 103 Medina
  • 105 Meigs
  • 107 Mercer
  • 109 Miami
  • 111 Monroe
  • 113 Montgomery
  • 115 Morgan
  • 117 Morrow
  • 119 Muskingum
  • 121 Noble
  • 123 Ottawa
  • 125 Paulding
  • 127 Perry
  • 129 Pickaway
  • 131 Pike
  • 133 Portage
  • 135 Preble
  • 137 Putname
  • 139 Richland
  • 141 Ross
  • 143 Sandusky
  • 145 Scioto
  • 147 Seneca
  • 149 Shelby
  • 151 Stark
  • 153 Summit
  • 155 Trumbull
  • 157 Tuscarawas
  • 159 Union
  • 161 Van Wert
  • 163 Vinton
  • 165 Warren
  • 167 Washington
  • 169 Wayne
  • 171 Williams
  • 173 Wood
  • 175 Wyandot

40 OKLAHOMA (OK)

  • 001 Adair
  • 003 Alfalfa
  • 005 Atoka
  • 007 Beaver
  • 009 Beckham
  • 011 Blaine
  • 013 Bryan
  • 015 Caddo
  • 017 Canadian
  • 019 Carter
  • 021 Cherokee
  • 023 Choctaw
  • 025 Cimarron
  • 027 Cleveland
  • 029 Coal
  • 031 Comanche
  • 033 Cotton
  • 035 Craig
  • 037 Creek
  • 039 Custer
  • 041 Delaware
  • 043 Dewey
  • 045 Ellis
  • 047 Garfield
  • 049 Garvin
  • 051 Grady
  • 053 Grant
  • 055 Greer
  • 057 Harmon
  • 059 Harper
  • 061 Haskell
  • 063 Hughes
  • 065 Jackson
  • 067 Jefferson
  • 069 Johnston
  • 071 Kay
  • 073 Kingfisher
  • 075 Kiowa
  • 077 Latimer
  • 079 Le Flore
  • 081 Lincoln
  • 083 Logan
  • 085 Love
  • 087 McClain
  • 089 McCurtain
  • 091 McIntosh
  • 093 Major
  • 095 Marshall
  • 097 Mayes
  • 099 Murray
  • 101 Muskogee
  • 103 Noble
  • 105 Nowata
  • 107 Okfuskee
  • 109 Oklahoma
  • 111 Okmulgee
  • 113 Osage
  • 115 Ottawa
  • 117 Pawnee
  • 119 Payne
  • 121 Pttsburg
  • 123 Pontotoc
  • 125 Pottawatomie
  • 127 Pushmataha
  • 129 Roger Mills
  • 131 Rogers
  • 133 Seminole
  • 135 Sequoyah
  • 137 Stephens
  • 139 Texas
  • 141 Tillman
  • 143 Tulsa
  • 145 Wagoner
  • 147 Washington
  • 149 Washita
  • 151 Woods
  • 153 Woodward

41 OREGON (OR)

  • 001 Baker
  • 003 Benton
  • 005 Clackamas
  • 007 Clatsop
  • 009 Columbia
  • 011 Coos
  • 013 Crook
  • 015 Curry
  • 017 Deschutes
  • 019 Douglas
  • 021 Gilliam
  • 023 Grant
  • 025 Harney
  • 027 Hood River
  • 029 Jackson
  • 031 Jefferson
  • 033 Josephine
  • 035 Klamath
  • 037 Lake
  • 039 Lane
  • 041 Lincoln
  • 043 Linn
  • 045 Malheur
  • 047 Marion
  • 049 Morrow
  • 051 Multnomah
  • 053 Polk
  • 055 Sherman
  • 057 Tillamook
  • 059 Umatilla
  • 061 Union
  • 063 Wallowa
  • 065 Wasco
  • 067 Washington
  • 069 Wheeler
  • 071 Yamhill

42 PENNSYLVANIA (PA)

  • 001 Adams
  • 003 Allegheny
  • 005 Armstrong
  • 007 Beaver
  • 009 Bedford
  • 011 Berks
  • 013 Blair
  • 015 Bradford
  • 017 Bucks
  • 019 Butler
  • 021 Cambria
  • 023 Cameron
  • 025 Carbon
  • 027 Centre
  • 029 Chester
  • 031 Clarion
  • 033 Clearfield
  • 035 Clinton
  • 037 Columbia
  • 039 Crawford
  • 041 Cumberland
  • 043 Dauphin
  • 045 Delaware
  • 047 Elk
  • 049 Erie
  • 051 Fayette
  • 053 Forest
  • 055 Franklin
  • 057 Fulton
  • 059 Greene
  • 061 Huntington
  • 063 Indiana
  • 065 Jefferson
  • 067 Juniata
  • 069 Lackawanna
  • 071 Lancaster
  • 073 Lawrence
  • 075 Lebanon
  • 077 Lehigh
  • 079 Luzerne
  • 081 Lycoming
  • 083 Mc Kean
  • 085 Mercer
  • 087 Mifflin
  • 089 Monroe
  • 091 Montgomery
  • 093 Montour
  • 095 Northampton
  • 097 Northumberland
  • 099 Perry
  • 101 Philadelphia
  • 103 Pike
  • 105 Potter
  • 107 Schuylkill
  • 109 Snyder
  • 111 Somerset
  • 113 Sullivan
  • 115 Susquehanna
  • 117 Tioga
  • 119 Union
  • 121 Venango
  • 123 Warren
  • 125 Washington
  • 127 Wayne
  • 129 Westmoreland
  • 131 Wyoming
  • 133 York

44 RHODE ISLAND (RI)

  • 001 Bristol
  • 003 Kent
  • 005 Newport
  • 007 Providence
  • 009 Washington

45 SOUTH CAROLINA (SC)

  • 001 Abbeville
  • 003 Aiken
  • 005 Allendale
  • 007 Anderson
  • 009 Bamberg
  • 011 Barnwell
  • 013 Beaufort
  • 015 Berkeley
  • 017 Calhoun
  • 019 Charleston
  • 021 Cherokee
  • 023 Chester
  • 025 Chesterfield
  • 027 Clarendon
  • 029 Colleton
  • 031 Darlington
  • 033 Dillon
  • 035 Dorchester
  • 037 Edgefield
  • 039 Fairfield
  • 041 Florence
  • 043 Georgetown
  • 045 Greenville
  • 047 Greenwood
  • 049 Hampton
  • 051 Horry
  • 053 Jasper
  • 055 Kershaw
  • 057 Lancaster
  • 059 Laurens
  • 061 Lee
  • 063 Lexington
  • 065 McCormick
  • 067 Marion
  • 069 Marlboro
  • 071 Newberry
  • 073 Oconee
  • 075 Orangeburg
  • 077 Pickens
  • 079 Richland
  • 081 Saluda
  • 083 Spartanburg
  • 085 Sumter
  • 087 Union
  • 089 Williamsburg
  • 091 York

46 SOUTH DAKOTA (SD)

  • 003 Aurora
  • 005 Beadle
  • 007 Bennett
  • 009 Bon Homme
  • 011 Brookings
  • 013 Brown
  • 015 Brule
  • 017 Buffalo
  • 019 Butte
  • 021 Campbell
  • 023 Charles Mix
  • 025 Clark
  • 027 Clay
  • 029 Codington
  • 031 Corson
  • 033 Custer
  • 035 Davison
  • 037 Day
  • 039 Deuel
  • 041 Dewey
  • 043 Douglas
  • 045 Edmunds
  • 047 Fall River
  • 049 Faulk
  • 051 Grant
  • 053 Gregory
  • 055 Haakon
  • 057 Hamlin
  • 059 Hand
  • 061 Hanson
  • 063 Harding
  • 065 Hughes
  • 067 Hutchinson
  • 069 Hyde
  • 071 Jackson
  • 073 Jerauld
  • 075 Jones
  • 077 Kingsbury
  • 079 Lake
  • 081 Lawrence
  • 083 Lincoln
  • 085 Lyman
  • 087 McCook
  • 089 McPherson
  • 091 Marshall
  • 093 Meade
  • 095 Mellette
  • 097 Miner
  • 099 Minnehaha
  • 101 Moody
  • 103 Pennington
  • 105 Perkins
  • 107 Potter
  • 109 Roberts
  • 111 Sanborn
  • 113 Shannon
  • 115 Spink
  • 117 Stanley
  • 119 Sully
  • 121 Todd
  • 123 Tripp
  • 125 Turner
  • 127 Union
  • 129 Walworth
  • 135 Yankton
  • 137 Ziebach

47 TENNESSEE (TN)

  • 001 Anderson
  • 003 Bedford
  • 005 Benton
  • 007 Bledsoe
  • 009 Blount
  • 011 Bradley
  • 013 Campbell
  • 015 Cannon
  • 017 Carroll
  • 019 Carter
  • 021 Cheatham
  • 023 Chester
  • 025 Claiborne
  • 027 Clay
  • 029 Cocke
  • 031 Coffee
  • 033 Crockett
  • 035 Cumberland
  • 037 Davidson
  • 039 Decatur
  • 041 DeKalb
  • 043 Dickson
  • 045 Dyer
  • 047 Fayette
  • 049 Fentress
  • 051 Franklin
  • 053 Gibson
  • 055 Giles
  • 057 Grainger
  • 059 Greene
  • 061 Grundy
  • 063 Hamblen
  • 065 Hamilton
  • 067 Hancock
  • 069 Hardeman
  • 071 Hardin
  • 073 Hawkins
  • 075 Haywood
  • 077 Henderson
  • 079 Henry
  • 081 Hickman
  • 083 Houston
  • 085 Humphreys
  • 087 Jackson
  • 089 Jefferson
  • 091 Johnson
  • 093 Knox
  • 095 Lake
  • 097 Lauderdale
  • 099 Lawrence
  • 101 Lewis
  • 103 Lincoln
  • 105 Loudon
  • 107 McMinn
  • 109 McNairy
  • 111 Macon
  • 113 Madison
  • 115 Marion
  • 117 Marshall
  • 119 Maury
  • 121 Meigs
  • 123 Monroe
  • 125 Montgomery
  • 127 Moore
  • 129 Morgan
  • 131 Obion
  • 133 Overton
  • 135 Perry
  • 137 Pickett
  • 139 Polk
  • 141 Putnam
  • 143 Rhea
  • 145 Roane
  • 147 Robertson
  • 149 Rutherford
  • 151 Scott
  • 153 Sequatchie
  • 155 Sevier
  • 157 Shelby
  • 159 Smith
  • 161 Stewart
  • 163 Sullivan
  • 165 Sumner
  • 167 Tipton
  • 169 Trousdale
  • 171 Unicoi
  • 173 Union
  • 175 Van Buren
  • 177 Warren
  • 179 Washington
  • 181 Wayne
  • 183 Wealey
  • 185 White
  • 187 Williamson
  • 189 Wilson

48 TEXAS (TX)

  • 001 Anderson
  • 003 Andrews
  • 005 Angelina
  • 007 Aransas
  • 009 Archer
  • 011 Armstrong
  • 013 Atascosa
  • 015 Austin
  • 017 Bailey
  • 019 Bandera
  • 021 Bastrop
  • 023 Baylor
  • 025 Bee
  • 027 Bell
  • 029 Bexar
  • 031 Blanco
  • 033 Borden
  • 035 Bosque
  • 037 Bowie
  • 039 Brazoria
  • 041 Brazos
  • 043 Brewster
  • 045 Briscoe
  • 047 Brooks
  • 049 Brown
  • 051 Burleson
  • 053 Burnet
  • 055 Caldwell
  • 057 Calhoun
  • 059 Callahan
  • 061 Cameron
  • 063 Camp
  • 065 Carson
  • 067 Cass
  • 069 Castro
  • 071 Chambers
  • 073 Cherokee
  • 075 Childress
  • 077 Clay
  • 079 Cochran
  • 081 Coke
  • 083 Coleman
  • 085 Collin
  • 087 Collingsworth
  • 089 Colorado
  • 091 Comal
  • 093 Comanche
  • 095 Concho
  • 097 Cooke
  • 099 Coryell
  • 101 Cottle
  • 103 Crane
  • 105 Crockett
  • 107 Crosby
  • 109 Culberson
  • 111 Dallam
  • 113 Dallas
  • 115 Dawson
  • 117 Deaf Smith
  • 119 Delta
  • 121 Denton
  • 123 DeWitt
  • 125 Dickens
  • 127 Dimmit
  • 129 Donley
  • 131 Duval
  • 133 Eastland
  • 135 Ector
  • 137 Edwards
  • 139 Ellis
  • 141 El Paso
  • 143 Erath
  • 145 Falls
  • 147 Fannin
  • 149 Fayette
  • 151 Fisher
  • 153 Floyd
  • 155 Foard
  • 157 Fort Bend
  • 159 Franklin
  • 161 Freestone
  • 163 Frio
  • 165 Gaines
  • 167 Galveston
  • 169 Garza
  • 171 Gillespie
  • 173 Glasscock
  • 175 Goliad
  • 177 Gonzales
  • 179 Gray
  • 181 Grayson
  • 183 Gregg
  • 185 Grimes
  • 187 Guadalupe
  • 189 Hale
  • 191 Hall
  • 193 Hamilton
  • 195 Hansford
  • 197 Hardeman
  • 199 Hardin
  • 201 Harris
  • 203 Harrison
  • 205 Hartley
  • 207 Haskell
  • 209 Hays
  • 211 Hemphill
  • 213 Henderson
  • 215 Hidalgo
  • 217 Hill
  • 219 Hockley
  • 221 Hood
  • 223 Hopkins
  • 225 Houston
  • 227 Howard
  • 229 Hudspeth
  • 231 Hunt
  • 233 Hutchinson
  • 235 Irion
  • 237 Jack
  • 239 Jackson
  • 241 Jasper
  • 243 Jeff Davis
  • 245 Jefferson
  • 247 Jim Hogg
  • 249 Jim Wells
  • 251 Johnson
  • 253 Jones
  • 255 Karne
  • 257 Kaufman
  • 259 Kendall
  • 261 Kenedy
  • 263 Kent
  • 265 Kerr
  • 267 Kimble
  • 269 King
  • 271 Kinney
  • 273 Kleberg
  • 275 Knox
  • 277 Lamar
  • 279 Lamb
  • 281 Lampasas
  • 283 La Salle
  • 285 Lavaca
  • 287 Lee
  • 289 Leon
  • 291 Liberty
  • 293 Limestone
  • 295 Lipscomb
  • 297 Live Oak
  • 299 Llano
  • 301 Loving
  • 303 Lubbock
  • 305 Lynn
  • 307 McCulloch
  • 309 McLennan
  • 311 McMullen
  • 313 Madison
  • 315 Marion
  • 317 Martin
  • 319 Mason
  • 321 Matagorda
  • 323 Maverick
  • 325 Medina
  • 327 Menard
  • 329 Midland
  • 331 Milam
  • 333 Mills
  • 335 Mitchell
  • 337 Montague
  • 339 Montgomery
  • 341 Moore
  • 343 Morris
  • 345 Motley
  • 347 Nacogdoches
  • 349 Navarro
  • 351 Newton
  • 353 Nolan
  • 355 Nueces
  • 357 Ochiltree
  • 359 Oldham
  • 361 Orange
  • 363 Palo Pinto
  • 365 Panola
  • 367 Parker
  • 369 Parmer
  • 371 Pecos
  • 373 Polk
  • 375 Potter
  • 377 Presidio
  • 379 Rains
  • 381 Randall
  • 383 Reagan
  • 385 Real
  • 387 Red River
  • 389 Reeves
  • 391 Refugio
  • 393 Roberts
  • 395 Robertson
  • 397 Rockwall
  • 399 Runnels
  • 401 Rusk
  • 403 Sabine
  • 405 San Augustine
  • 407 San Jacinto
  • 409 San Patricio
  • 411 San Saba
  • 413 Schleicher
  • 415 Scurry
  • 417 Shackelford
  • 419 Shelby
  • 421 Sherman
  • 423 Smith
  • 425 Somervell
  • 427 Starr
  • 429 Stephens
  • 431 Sterling
  • 433 Stonewall
  • 435 Sutton
  • 437 Swisher
  • 439 Tarrant
  • 441 Taylor
  • 443 Terrell
  • 445 Terry
  • 447 Throckmorton
  • 449 Titus
  • 451 Tom Green
  • 453 Travis
  • 455 Trinity
  • 457 Tyler
  • 459 Upshur
  • 461 Upton
  • 463 Uvalde
  • 465 Val Verde
  • 467 Van Zandt
  • 469 Victoria
  • 471 Walker
  • 473 Waller
  • 475 Ward
  • 477 Washington
  • 479 Webb
  • 481 Wharton
  • 483 Wheeler
  • 485 Wichita
  • 487 Wilbarger
  • 489 Willacy
  • 491 Williamson
  • 493 Wilson
  • 495 Winkler
  • 497 Wise
  • 499 Wood
  • 501 Yoakum
  • 503 Young
  • 505 Zapata
  • 507 Zavala

49 UTAH (UT)

  • 001 Beaver
  • 003 Box Elder
  • 005 Cache
  • 007 Carbon
  • 009 Daggett
  • 011 Davis
  • 013 Duchesne
  • 015 Emery
  • 017 Garfield
  • 019 Grand
  • 021 Iron
  • 023 Juab
  • 025 Kane
  • 027 Millard
  • 029 Morgan
  • 031 Piute
  • 033 Rich
  • 035 Salt Lake
  • 037 San Juan
  • 039 Sanpete
  • 041 Sevier
  • 043 Summit
  • 045 Tooele
  • 047 Uintah
  • 049 Utah
  • 051 Wasatch
  • 053 Washington
  • 055 Wayne
  • 057 Weber

50 VERMONT (VT)

  • 001 Addison
  • 003 Bennington
  • 005 Caledonia
  • 007 Chittenden
  • 009 Essex
  • 011 Franklin
  • 013 Grand Isle
  • 015 Lamoille
  • 017 Orange
  • 019 Orleans
  • 021 Rutland
  • 023 Washington
  • 025 Windham
  • 027 Windsor

51 VIRGINIA (VA)

  • 001 Accomack
  • 003 Albemarle
  • 005 Alleghany
  • 007 Amelia
  • 009 Amherst
  • 011 Appomattox
  • 013 Arlington
  • 015 Augusta
  • 017 Bath
  • 019 Bedford
  • 021 Bland
  • 023 Botetourt
  • 025 Brunswick
  • 027 Buchanan
  • 029 Buckingham
  • 031 Campbell
  • 033 Caroline
  • 035 Carroll
  • 036 Charles City
  • 037 Charlotte
  • 041 Chesterfield
  • 043 Clarke
  • 045 Craig
  • 047 Culpeper
  • 049 Cumberland
  • 051 Dickenson
  • 053 Dinwiddie
  • 057 Essex
  • 059 Fairfax
  • 061 Fauquier
  • 063 Floyd
  • 065 Fluvanna
  • 067 Franklin
  • 069 Frederick
  • 071 Giles
  • 073 Gloucester
  • 075 Goochland
  • 077 Grayson
  • 079 Greene
  • 081 Greensville
  • 083 Halifax
  • 085 Hanover
  • 087 Henrico
  • 089 Henry
  • 091 Highland
  • 093 Isle of Wight
  • 095 James City
  • 097 King and Queen
  • 099 King George
  • 101 King William
  • 103 Lancaster
  • 105 Lee
  • 107 Loudoun
  • 109 Louisa
  • 111 Lunenburg
  • 113 Madison
  • 115 Mathews
  • 117 Mecklenburg
  • 119 Middlesex
  • 121 Montgomery
  • 125 Nelson
  • 127 New Kent
  • 131 Northampton
  • 133 Northumberland
  • 135 Nottoway
  • 137 Orange
  • 139 Page
  • 141 Patrick
  • 143 Pittsylvania
  • 145 Powhatan
  • 147 Prince Edward
  • 149 Prince George
  • 153 Prince William
  • 155 Pulaski
  • 157 Rappahannock
  • 159 Richmond
  • 161 Roanoke
  • 163 Rockbridge
  • 165 Rockingham
  • 167 Russell
  • 169 Scott
  • 171 Shenandoah
  • 173 Smyth
  • 175 Southampton
  • 177 Spotsylvania
  • 179 Stafford
  • 181 Surry
  • 183 Sussex
  • 185 Tazewell
  • 187 Warren
  • 191 Washington
  • 193 Westmoreland
  • 195 Wise
  • 197 Wythe
  • 199 York
  • 510 Alexandria city
  • 5151 Bedford city
  • 520 Bristol city
  • 530 Buena Vista city
  • 540 Charlottesville city
  • 550 Chesapeake city
  • 560 Clifton Forge city
  • 570 Colonial Heights city
  • 580 Covington city
  • 590 Danville city
  • 595 Emporia city
  • 600 Fairfax city
  • 610 Falls Church city
  • 620 Franklin city
  • 630 Fredericksburg city
  • 640 Galax city
  • 650 Hampton city
  • 660 Harrisonburg city
  • 670 Hopewell city
  • 678 Lexington city
  • 680 Lynchburg city
  • 690 Martinsville city
  • 700 Newport News city
  • 710 Norfolk city
  • 720 Norton city
  • 730 Petersburg city
  • 740 Portsmouth city
  • 750 Radford city
  • 760 Richmond city
  • 770 Roanoke city
  • 775 Salem city
  • 780 South Boston city
  • 790 Staunton city
  • 800 Suffolk city
  • 810 Virginia Beach city
  • 820 Waynesboro city
  • 830 Williamsburg city
  • 840 Winchester city

5151 Bedford. Independent City, Revised FIPS 6-1, June 15, 1970.
Bedford, formerly part of Bedford County, has been incorporated as an independent city.

53 WASHINGTON (WA)

  • 001 Adams
  • 003 Asotin
  • 005 Benton
  • 007 Chelan
  • 009 Clallam
  • 011 Clark
  • 013 Columbia
  • 015 Cowlitz
  • 017 Douglas
  • 019 Ferry
  • 021 Franklin
  • 023 Garfield
  • 025 Grant
  • 027 Grays Harbor
  • 029 Island
  • 031 Jefferson
  • 033 King
  • 035 Kitsap
  • 037 Kittitas
  • 039 Klickitat
  • 041 Lewis
  • 043 Lincoln
  • 045 Mason
  • 047 Okanogan
  • 049 Pacific
  • 051 Pend Oreille
  • 053 Pierce
  • 055 San Juan
  • 057 Skagit
  • 059 Skamania
  • 061 Snohomish
  • 063 Spokane
  • 065 Stevens
  • 067 Thurston
  • 069 Wahkiakum
  • 071 Walla Walla
  • 073 Whatcom
  • 075 Whitman
  • 077 Yakima

54 WEST VIRGINIA (WV)

  • 001 Barbour
  • 003 Berkeley
  • 005 Boone
  • 007 Braxton
  • 009 Brooke
  • 011 Cabell
  • 013 Calhoun
  • 015 Clay
  • 017 Doddridge
  • 019 Fayette
  • 021 Gilmer
  • 023 Grant
  • 025 Greenbrier
  • 027 Hampshire
  • 029 Hancock
  • 031 Hardy
  • 033 Harrison
  • 035 Jackson
  • 037 Jefferson
  • 039 Kanawha
  • 041 Lewis
  • 043 Lincoln
  • 045 Logan
  • 047 McDowell
  • 049 Marion
  • 051 Marshall
  • 053 Mason
  • 055 Mercer
  • 057 Mineral
  • 059 Mingo
  • 061 Monongalia
  • 063 Monroe
  • 065 Morgan
  • 067 Nicholas
  • 069 Ohio
  • 071 Pendleton
  • 073 Pleasants
  • 075 Pocahontas
  • 077 Preston
  • 079 Putnam
  • 081 Raleigh
  • 083 Randolph
  • 085 Ritchie
  • 087 Roane
  • 089 Summers
  • 091 Taylor
  • 093 Tucker
  • 095 Tyler
  • 097 Upshur
  • 099 Wayne
  • 101 Webster
  • 103 Wetzel
  • 105 Wirt
  • 107 Wood
  • 109 Wyoming

55 WISCONSIN (WI)

  • 009 Brown
  • 011 Buffalo
  • 013 Burnett
  • 015 Calumet
  • 017 Chippewa
  • 019 Clark
  • 021 Columbia
  • 023 Crawford
  • 025 Dane
  • 027 Dodge
  • 029 Door
  • 031 Douglas
  • 033 Dunn
  • 035 Eau Claire
  • 037 Florence
  • 039 Fond du Lac
  • 041 Forest
  • 043 Grant
  • 045 Green
  • 047 Green Lake
  • 049 Iowa
  • 051 Iron
  • 053 Jackson
  • 055 Jefferson
  • 057 Juneau
  • 059 Kenosha
  • 061 Kewaunee
  • 063 La Crosse
  • 065 Lafayette
  • 067 Langlade
  • 069 Lincoln
  • 071 Manitowoc
  • 073 Marathon
  • 075 Marinette
  • 077 Marquette
  • 078 Menominee
  • 079 Milwaukee
  • 081 Monroe
  • 083 Oconto
  • 085 Oneida
  • 087 Outagamie
  • 089 Ozaukee
  • 091 Pepin
  • 093 Pierce
  • 095 Polk
  • 097 Portage
  • 099 Price
  • 101 Racine
  • 103 Richland
  • 105 Rock
  • 107 Rusk
  • 109 St. Croix
  • 111 Sauk
  • 113 Sawyer
  • 115 Shawano
  • 117 Sheboygan
  • 119 Taylor
  • 121 Trempealeau
  • 123 Vernon
  • 125 Vilas
  • 127 Walworth
  • 129 Washburn
  • 131 Washington
  • 133 Waukesha
  • 135 Waupaca
  • 137 Waushara
  • 139 Winnebago
  • 141 Woo

56 WYOMING (WY)

  • 001 Albany
  • 003 Big Hortn
  • 005 Campbell
  • 007 Carbon
  • 009 Converse
  • 011 Crook
  • 013 Fremont
  • 015 Goshen
  • 017 Hot Springs
  • 019 Johnson
  • 021 Laramie
  • 023 Lincoln
  • 025 Natrona
  • 027 Niobrara
  • 029 Park
  • 031 Platte
  • 033 Sheridan
  • 035 Sublette
  • 037 Sweetwater
  • 039 Teton
  • 041 Uinta
  • 043 Washakie
  • 045 Weston

Attachment 101: Country Codes

Click below to see the country codes for PAPI and CAPI years:

Foreign country codes: 1979-1992 PAPI
Code Country
101 Afghanistan
102 Albania
103 Algeria
104 Antigua
105 Argentina
106 Armenia
107 Australia
108 Austria
109 Bahamas
110 Bangladesh (East Pakistan)
111 Barbados
112 Belgium
113 Benin
114 Bermuda
115 Bolivia
116 Brazil
117 Bulgaria
118 Burma
119 Cambodia
120 Canada
121 Quebec
122 Ceylon (Sri Lanka)
123 Chile
124 China
125 Colombia
126 Costa Rica
127 Cuba
128 Curacao
129 Cyprus
130 Czechoslovakia
131 Denmark
132 Dominican Republic
133 Ecuador
134 Egypt
135 El Salvador
136 England
138 Ethiopia
139 Finland
140 France
141 French Guiana
142 Gambia
143 Germany
144 Ghana
145 Greece
146 Guadeloupe
147 Guatemala
148 Guinea
149 Guinea-Bisseau
150 Guyana
151 Haiti
152 Honduras
153 Hong Kong
154 Hungary
155 Iceland
156 India
157 Indonesia
158 Iran
159 Iraq
160 Ireland (Eire)
161 Israel
162 Italy
163 Ivory Coast
164 Jamaica
165 Japan
166 Jordan
167 Korea
168 Laos
170 Lebanon
171 Liberia
172 Libya
173 Liechtenstein
175 Luxembourg
176 Malaysia
177 Malta
178 Martinique
179 Mexico
180 Monaco
181 Morocco
182 Netherlands
183 New Guinea (Papua)
184 New Zealand
185 Nicaragua
186 Nigeria
187 Northern Ireland (Ulster)
188 Norway
189 Pakistan
190 Panama
191 Paraguay
192 Philippines
193 Peru
194 Poland
195 Portugal
196 Rhodesia
197 Romania
200 Saudi Arabia
201 Scandinavia
202 Scotland
203 Senegal
204 Sierra Leone
205 Singapore
206 South Africa
207 Spain
208 Surinam
209 Switzerland
210 Syria
211 Taiwan
212 Thailand
213 Togo
214 Trinidad & Tobago
215 Tunisia
216 Turkey
218 Uganda
219 Uruguay
220 U.S.S.R.
221 Venezuela
222 Vietnam
223 Virgin Islands (not U.S.)
224 Wales
225 Yugoslavia
300 United States
Foreign country codes: 1979-1992 PAPI (Other countries not mentioned above)
Code Country
301 in Asia
302 in Africa (sub-Saharan)
303 in the Caribbean
304 in Europe
305 in the Middle East
306 in the Pacific Islands
400 Other (List)

Foreign country codes: 1993-2022 CAPI
Code Country
102 Afghanistan
104 Albania
106 Algeria
108 Antigua
110 Argentina
112 Armenia
114 Australia
115 Austria
116 Azerbaijan
130 Bahamas
132 Bangladesh (East Pakistan)
134 Barbados
136 Belgium
138 Byelorussia (Belorusse)
140 Benin
142 Bermuda
144 Bolivia
146 Bosnia-Hercegovina
148 Brazil
150 Bulgaria
152 Myanmar (formerly Burma)
170 Kampuchea (formerly Cambodia)
172 Canada
174 Quebec (Canada)
176 Ceylon (Sri Lanka)
178 Chile
180 China
182 Colombia
184 Costa Rica
186 Croatia
188 Cuba
190 Curacao
192 Cyprus
194 Czech Republic (formerly part of Czechoslovakia)
210 Denmark
212 Dominican Republic
230 Ecuador
232 Egypt
234 El Salvador
236 England
238 Estonia
240 Ethiopia
250 Finland
252 France
254 French Guiana
270 Gambia
272 Germany
274 Georgia
276 Ghana
278 Greece
280 Guadeloupe
282 Guatemala
284 Guinea
286 Guinea-Bisseau
288 Guyana
300 Haiti
302 Honduras
304 Hong Kong
306 Hungary
320 Iceland
322 India
324 Indonesia
326 Iran
328 Iraq
330 Ireland (Eire)
332 Israel
334 Italy
336 Ivory Coast
350 Jamaica
352 Japan
354 Jordan
370 Khazakhstan
372 Korea
374 Kurdizia
390 Laos
392 Latvia
394 Lebanon
396 Liberia
398 Libya
400 Liechtenstein
402 Lithuania
404 Luxembourg
420 Macedonia
422 Malaysia
424 Malta
426 Martinique
428 Mexico
430 Moldavia
432 Monaco
434 Morocco
436 Myanmar (formerly Burma)
450 Netherlands
452 New Guinea (Papua)
454 New Zealand
456 Nicaragua
458 Nigeria
460 Northern Ireland (Ulster)
462 Norway
480 Pakistan
482 Panama
484 Paraguay
486 Philippines
488 Peru
490 Poland
492 Portugal
510 Rhodesia
512 Romania
514 Russia
530 Saudi Arabia
532 Scandinavia
534 Scotland
536 Senegal
538 Sierra Leone
540 Singapore
542 Slovak Republic (formerly part of Czechoslovakia)
544 Slovenia
546 South Africa
548 Spain
550 Surinam
552 Sweden
554 Switzerland
556 Syria
570 Taiwan
572 Tajikhistan
574 Thailand
576 Togo
578 Trinidad & Tobago
580 Tunisia
582 Turkey
584 Turkomenistan
600 Uganda
602 Ukraine
604 United States
606 Uzbekhistan
620 Venezuela
622 Vietnam
624 Virgin Islands (not U.S.)
640 Wales
650 Yugoslavia
660 Other country - Asia
662 Other country - Africa (sub-Saharan)
664 Other country - Caribbean
666 Other country - Europe
668 Other country - Middle East
670 Other country - Pacific Islands
672 Other (SPECIFY)

Attachment 100: Geographic Regions

Table: States by region
Census Division

States

Region 1: Northeast
  • Connecticut
  • Maine
  • Massachusetts
  • New Hampshire
  • New Jersey
  • New York
  • Pennsylvania
  • Rhode Island
  • Vermont
Region 2: North Central
  • Illinois
  • Indiana
  • Iowa
  • Kansas
  • Michigan
  • Minnesota
  • Missouri
  • Nebraska
  • North Dakota
  • Ohio
  • South Dakota
  • Wisconsin
Region 3: South
  • Alabama
  • Arkansas
  • Delaware
  • District of Columbia
  • Florida
  • Georgia
  • Kentucky
  • Louisiana
  • Maryland
  • Mississippi
  • North Carolina
  • Oklahoma
  • South Carolina
  • Tennessee
  • Texas
  • Virginia
  • West Virginia
Region 4: West
  • Alaska
  • Arizona
  • California
  • Colorado
  • Hawaii
  • Idaho
  • Montana
  • Nevada
  • New Mexico
  • Oregon
  • Utah
  • Washington
  • Wyoming

Appendix 10: Geocode Documentation

Documentation for the NLSY79 Geocode data files

Geocode data format

This document provides a discussion on the creation of the variables available on the NLSY79 restricted-use Geocode data. The geocode data are now being released as comma-delimited ASCII data with support files. Because of the volume of variables, the data have been split into five sets of files based on content:

  • Location data for respondent
  • Data from survey responses and created variables
  • Computed distance measures between addresses at each survey point for each respondent
  • County and SMSA level data for 1979-1992 (County and City Data Book variables)
  • County and SMSA level data for 1993-2002 (County and City Data Book variables)

The geocode data also includes text/ASCII data files as well as SPSS, SAS and STATA programs to read them. In addition, the geocode data contains documentation files (user's guide and codebook supplement) for the NLSY79. The data files contain variables that are only available on the restricted-use Geocode data release, plus the identification number to allow merging with the main 1979-2022 public data.

Geocode data source files and content

County and City Data Books

For survey years 1979-2002, selected variables from the County and City Data Books from various years are provided along with geographic variables from the NLSY79 main data file. No variables from the County and City Data Books are included for survey years 2004-2022.

The county and state of residence for each NLSY79 respondent for each survey year between 1979 and 2002 were matched with the county and state variables in the specific County and City Data Book data files used for each year. Selected county-level or SMSA-level environmental variables were extracted from those files and included in the geocode data. The County and City Data Book data files were prepared by the U.S. Census Bureau. Related printed matter for each of these data files can be found in the County and City Data Book for the specified year. These books are also published by the Census Bureau.

The following is a brief description of the various NLSY79 geocode data for specific survey years and the County and City Data Book data files that were merged with the different years of NLSY79 data:

  1. The 1979-1982 geocode data include county-level and SMSA-level variables from the County and City Data Book, 1972 data file, which provides data from the 1970 Census of the Population and Housing, the 1972 Economic Census, and the 1969 Census of Agriculture, and other data derived from a variety of federal government and private agencies.
  2. The 1979-1982 geocode data include county-level and SMSA-level variables from the County and City Data Book, 1977 data file, which provides data from the 1970 Census of the Population and Housing, the 1972 Economic Census, and the 1974 Census of Agriculture, and other data derived from a variety of federal government and private agencies.
  3. The 1983-1987 geocode data include county-level variables from the County and City Data Book, 1983 data file, which provides data from the 1980 Census of the Population and Housing, the 1977 Economic Census, the 1978 Census of Agriculture, and other data derived from a variety of federal government and private agencies.
  4. The 1988-1996 geocode data includes county-level variables from the County and City Data Book, 1988 data file which provides data from the 1980 Census of the Population and Housing, the Current Population Surveys, and other data derived from a variety of federal government and private agencies.
  5. The 1998-2002 geocode data includes county-level variables from the County and City Data Book, 1994 data file, which provides data from the 1990 Census of the Population and Housing, the Current Population Surveys, and other data derived from a variety of federal government and private agencies.

Variables from the 1988 County and City Data Book data file were selected with an eye toward comparability with the 1983 County and City Data Book variables. Similar considerations were made between the 1994 and 1988 variables. In the absence of updated information from the 1988 County and City Data Book data file, the 1983 County and City Data Book variables were retained. However, some differences do exist between similar variables selected from the various County and City Data Book data files.

The 1983 County and City Data Book data file variables for MSA/NECMA and CMSA have been combined into one 4-digit variable in the 1988 County and City Data Book data file. Therefore, the 1988 County and City Data Book geographic variables correspond to the 1983 County and City Data Book geographic variables in the following manner:

  1. The MSA/NECMA codes that existed in the 1983 data are identical in the 1988 data.
  2. Six MSAs were added, one MSA was expanded, and one CMSA was expanded in the 1988 data. The MSAs that were added have their own unique 4-digit code.
  3. The 1983 CMSA variable was recorded with a new unique 4-digit code for each CMSA in the 1988 combined variable. The 1983 PMSA variable was retained and is identical to the 1988 PMSA variable. Therefore, each CMSA and PMSA is still identifiable in the same manner they were with the separate 1983 CMSA variable.
  4. Two 1983 CMSAs were redefined as MSAs in the 1988 data. These are Kansas City and St. Louis. They have been recorded with their own unique 4-digit code.
  5. From 1979-1987, respondents living in New England were excluded from merging with the County and City Data Book, since the SMSA/MSA variable on the County and City Data Book, 1983 data file is the New England County Metropolitan Areas (NECMA) code. NECMA residents were not excluded when merging with the 1988 County and City Data Book data file. In the 1988 County and City Data Book data file, the MSA/NECMA and the CMSA variables found in the 1983 County and City Data Book data file were combined into one 4-digit variable. The addition of a "Record Type" variable in the County and City Data Book 1988 data makes it possible to distinguish separately between MSAs, NECMAs, and CMSAs. This "Record Type" variable classifies cases in the 1988 data combined MSA/NECMA/CMSA variable according to whether they provide information for the U.S., States, MSAs, NECMAs, CMSAs, or a Nonmetropolitan County. The use of this variable allows the user to exclude any of these groups from the analysis without having to conduct a county-by-county or state-by-state determination of NECMA/non-NECMA status. Respondents residing in NECMAs are found in the New England states of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont.

The population by age variables from the 1988 County and City Data Book data file are estimates made for the National Cancer Institute by the Census Bureau. These figures suppress data for counties in which the population is under 20,000. Users should keep this in mind during analysis.

City Reference Files

Another type of data file, the City Reference File (CRF) for various years, was also merged with the NLSY79 data in order to identify the SMSA/MSA for each respondent according to zip code. The City Reference File data files, prepared by the U.S. Census Bureau, contain the Federal Information Process Standards (FIPS) county and state codes, zip codes, and SMSA/MSA codes.

The following is a list of the various City Reference Files that were merged with the different years of NLSY79 data to identify the SMSA/MSA for each respondent:

  1. The 1979-1982 NLSY79 data was merged with the City Reference File, 1973, which contains the SMSA codes as defined by the Office of Management and Budget (OMB) as of August 15, 1973.
  2. The 1983 NLSY79 data was merged with the City Reference File, 1982, which contains the SMSA codes defined by OMB prior to June 30, 1983.
  3. The 1984-1987 NLSY79 data was merged with the City Reference File, 1983, which contains the MSA codes as defined by OMB as of June 30, 1983.
  4. The 1988-1992 NLSY79 data was merged with the City Reference File, 1987, which contains the MSA codes as defined by OMB as of June 30, 1987.
  5. The 1993-1998 NLSY79 data was merged with the City Reference File, 1993, which contains the MSA codes as defined by OMB as of July 31, 1993.

Local Exchange Routing Guides

Between 1989 and 1994, a third type of data file was used to verify the geocode information provided by NORC for each respondent. The Local Exchange Routing Guide (LERG) data file is constructed by Bell Communications Research (BELLCORE) and contains address information for the "switches" which regulate each telephone area code and exchange.

  1. The LERG data file used for the 1989 NLSY79 geocodes was updated through October 1989.
  2. The LERG file used for the 1990 and 1991 NLSY79 geocodes was updated through January 20, 1992.
  3. The LERG file used for the 1992 NLSY79 geocodes was updated through March 1, 1993.
  4. The LERG file used for the 1993-94 NLSY79 geocodes was updated through August 1, 1994.

Geostatistical mapping software

Beginning in 1996, geostatistical mapping software was employed in the geocoding process to assign latitude and longitude coordinates and other geographical codes. Basic standard geographic information such as latitude and longitude was linked to each respondent's address. This was accomplished by matching address data to information in the software database. Matching records were appended with the matching address, coordinates, Census information, and FIPS (Federal Information Processing Standards) codes for state, county, MCD (Minor Civil Division), and MSA (Metropolitan Statistical Area). The software packages used in specific survey years are listed below.

  1. Matchmaker for Windows, V2.5 was used in survey years 1996 and 1998.
  2. Maptitude V4.2 was used in survey year 2000.
  3. Maptitude V4.6 was used in survey years 2002 and 2004.
  4. ArcGIS (ArcMap) V9.2 was used in survey years 2006-2012.
  5. Maptitude 2022 was used in survey year 2022.

1979-1988 Geocode data creation procedures

The following briefly outlines the procedures used to create the 1979-1988 NLSY79 geocode data.

  1. State, county, and zip codes are reported by each NLSY79 respondent. Missing information was hand-edited whenever possible. A discussion of the hand-editing process follows. The variable GEO10 was created to indicate the type of hand-editing that was done on each case. The creation of GEO10 is described in this document.
  2. The state, county, and zip codes were then matched with the CRF. For those cases where the NLSY79 state, county, and zip codes matched with a state, county, and zip code from the CRF, the SMSA/MSA from the CRF was added to each respondent's record.
  3. Between 1983 and 1987, for cases missing an SMSA/MSA because there was no match with the CRF, a match was made based on the NLSY79 county and state and the CRF county and state so that an SMSA/MSA could be provided.
  4. The NLSY79 data, with SMSA/MSA added when there was a match on all three residence variables, was then merged with the County and City Data Book data files. In the 1987 and 1988 NLSY79 data, if there was not an exact match on the state, county, and zip codes, two additional steps were taken. First, a match was attempted on the state and zip codes. If the state and zip codes matched, then the county and SMSA/MSA codes from the CRF were added to the respondent's record (assigned an edit code of 10 in GEO10). Second, if there was no match on state and zip codes, but there was a match on the zip code only, then the state, county, and SMSA/MSA codes from the CRF were added to the respondent's record (assigned an edit code of 11 in GEO10).

Hand-edits and changes in matching procedures

1979-1982

More than 1,000 hand-edits for each survey year from 1979 through 1982 were performed to constrain respondents' reported state, county, and zip codes so that they conformed to legitimate state-county-zip combinations. In some cases, this involved making estimates for one or more of the above items. The state and county codes from the main NLSY79 data for each year that are included in the NLSY79 geocode data are the original, unedited values for the respondents. The hand-edited versions of the state and county codes were used to match with the CRF and with the City and County Data Book data files for these years.

In compiling the 1981 geocode information, a systematic review of hand-edited state, county, and zip codes was also undertaken. All cases that required a hand-edit in any of the three survey years were included in this inspection. The point of this review was: (1) to check for consistency in hand-editing decision rules over the three years, and (2) where possible, to use the respondent's reported geocodes in subsequent years to check on the accuracy of hand-edits performed in preceding years (this was possible for those cases that required hand-edits in early years and which showed no change of residence over the period).

The results of these consistency checks were very encouraging. Only 13 cases turned up that seemed to be in error. These cases had their geocodes revised accordingly. While doing this review, several dozen other cases with keypunch or coding errors in the hand-edit code variables were also uncovered. These errors were also corrected. In any case, this procedure provides substantial validation to the overall hand-editing process.

1983-1988

In 1983-1987, the majority of hand-edits involved the derivation and addition of a zip code. Changes in the matching strategy were made because the zip code was more accurate than either the county or state geocodes taken individually. Some mismatching, however, did occur because the zip code was in error rather than the county or state code, but this error rate was smaller than another matching algorithm not requiring case by case hand edits. It is probable that some mismatching did occur because the county itself was in error. Nevertheless, we are confident that matching by zip code improved the quality of the match.

Users are cautioned that matching by state and zip code or by zip code only may result in a higher moving rate between 1987 and the previous interview year than might actually have occurred. We suspect that some NLSY79 county and state geocodes were not updated if the respondent reported an address change prior to the 1987 interview or the previous interview. If the geocodes were not updated in a previous interview, then there would have been an under-reporting of moving to a new county and/or state in that interview year that would now show up with the 1987 NLSY79 data because of the improved matching algorithm. In the 1987 NLSY79 geocode data, if the zip code and state did not match but the zip code alone matched, the state and county were added to the record.

Because the 1988 procedure required both the zip code and state to match, some cases in which the zip code alone matched, and which were possibly in error in 1987, may have been hand-edited in 1988. This may affect mobility rates between 1987 and 1988 to the extent that those inaccurate zip codes in 1987 may have been corrected in the 1988 NLSY79 data.

In 1988, more than 1,000 hand-edits were performed. Approximately 56.6% of these involved the derivation and addition of a zip code, while approximately 48.4% involved correction of the state of residence.

We believe that the requiring a zip code and state correspondence further improved the accuracy of the resulting matches. In support of this assumption, the cases that were actually hand-edited, produced only approximately 6% with an invalid county. The possibility of zip codes continuing across adjacent counties suggests that this may even be an overestimate of the actual error occurring.

1981 changes in SMSA designations

For those using these data to track the mobility of respondents over the 1979-81 survey years an additional caution applies. In June of 1981, the OMB announced the designation of 36 new SMSAs, the disqualification of one pre-existing SMSA, and the merger of two pre-existing SMSAs into one new area. The 1973 CRF file was updated by CHRR to reflect these changes, and the updates were applied beginning with the 1980 interview place of residence in the 1980 geocode data file. One consequence of these changes is that when attempting to match places of residence for respondents using data from the 1979 geocode data and separate 1980 updated geocode data, some respondents give the appearance of moving into (or out of) an SMSA between 1979 and 1980 when in fact they may not have moved at all. This faulty inference of mobility would be reached if one compared changes in SMSA designation between the separate 1979 and 1980 updated geocode data.

Users ordering a full complement of geocode data at any given point should not find this discrepancy in mobility. This applies only to those who ordered a 1979 geocode data and then updated that data with single year files in subsequent years. As single year files were no longer available after the 1979-89 release, recent purchasers of the geocode data would have received all available years of the geocode data, and should not detect the discrepancy resulting from the 1981 SMSA changes between the 1979 and 1980 separate data files. A variable representing the 1981 SMSA designation (if applicable) of place of residence at interview is currently present in the geocode data for all survey years, including 1979.

It is possible, however, that the created variable based upon SMSA of residence and found in the main NLSY79 data file named KEYVARS ("Is R's Current Residence in SMSA?"), would give a false impression of mobility in and out of an SMSA for respondents living in the same location for which the SMSA designation was changed between survey years. (See Appendix 6: Urban-Rural and SMSA-Central City Variables in the public-use file Codebook Supplement for further details on the creation of this variable.)

Note that all other SMSA environmental variables for those living in these new areas remain NA, since the County and City Data Book, 1972 and 1977 data files did not contain information for these SMSAs. 

Rewrite of 1979-1982 Geocode data

In 1989, work was undertaken to reduce the number of variables provided in the 1979-1982 NLSY79 geocode data so that the number and type of variables included in these data more closely resembled the geographic data available for the 1983 and subsequent survey years. The previous 1979-1982 NLSY79 geocode data file contained 2,245 variables. This number was reduced to 545 variables with county-level and SMSA-level data retained. In addition, four new variables were included in the 1979-1982 NLSY79 geocode data. These variables provide data on the "Continuous Unemployment Rate for the Labor Market of Current Residence" for each survey year. This reduction in the number of variables made it possible to better document the geocode variables and to produce codebooks like the ones produced for the main NLSY79 data.

1989-1994 Geocode data creation procedure

A new procedure was implemented in 1989 as an initial step in verifying the county and state of residence by using address information from the "switch" associated with each area code and exchange. In the hand-editing process for the 1988 geocode data, reported telephone information was found to be very accurate, even in cases for which some or all of the address information was in error. Thus the telephone information presented itself as a reliable, independent source of verification for the address information. The state and county generated from the phone number are compared to the state and county in the NORC address file for each respondent. Cases in which the telephone information would indicate a different state and/or county from that in the address file are identified through this process. This procedure helped identify respondents with incorrect or inconsistent records. Cases that produced such a non-match were checked for accuracy and hand-edited if necessary.

The following briefly outlines the procedures used to create the 1989-1994 geocode data.

  1. For 1989-1991, an initial data set was constructed containing state, county, and zip code information for the "switch" which regulates each area code and exchange (the "PHONE" data set). The procedures for the creation of the 1992-1994 geocode data were streamlined, particularly in terms of the hand-editing required on individual cases. A new locator database was created containing the most recent information on each respondent's residence at the time of the survey. Wherever possible, a code was then assigned for each state, county, and country (if applicable). The information in the new locator database was then compared to locator information from the previous interview year. This included an electronic comparison of the character strings entered for street addresses of respondents. If the state, county, and zipcode information matched that from the previous year, and the address strings matched in whole or in significant part (indicating probable typos or keypunch errors), the same state and county geocodes were assigned to a case as were assigned in the previous year. Cases for which a partial or full mismatch occurred, or for which information was missing from any field, were identified during this process and were hand-edited wherever necessary. These cases were then assigned a state and county code based upon the hand-edited data. The procedure of electronic matching of address strings has considerably reduced the number of cases requiring individual hand-editing. Data from each respondent's locator record was then matched by zip code to the state and county from the CRF data file (the "ZIP CODE" data) and by area code and extension to the state and zip from the Local Exchange Routing Guide (LERG) data file (the "PHONE" data).
  2. A second data set was constructed containing the state, county, zip code, and telephone information reported by the respondent ("ADDRESS" data) and the state and county information from the CRF for the respondent's reported zip code ("ZIP CODE" data).
  3. The state variables from each of these sources were then compared and a "quality of match" variable (GEO10 - see discussion in this document) was computed based upon the extent to which the "PHONE" state, the "ZIP CODE" state and the "ADDRESS" state match. The highest quality match exists if the "PHONE" state, the "ZIP CODE" state and the "ADDRESS" state all match. For 1989-1991, if a non-match occurred between these state variables, then the geocode information was represented by data matching the "PHONE" information. For 1992-1994, cases in which erroneous or missing zipcode and/or phone information could not be assigned and, in turn, which prevented assignment of state and county geocodes from either the "ZIP CODE" or the "PHONE" data files, were hand-edited as necessary. The matching procedure was then repeated.
  4. In 1989, the state and county established through this matching and verification procedure were then compared to the state and county reported by NORC for each respondent. In 1990 and 1991, the comparison was made to the state and county reported in the previous survey year. Cases for which a non-match occurred between states and/or counties were examined individually. These cases were hand-edited if possible.

From this point, the procedures closely follow those applied in constructing the geocode data files in prior survey years, with minor modifications. The CRF matching was based upon state and county only for the purposes of the final matching of information from the County and City Data Book data files. As metropolitan statistical area information is based upon county delineations (except in New England), matching on cleaned state and county data should not affect the assignment of respondent MSAs.

  1. The state and county were then matched with the CRF. For those cases where the NLSY79 state and county (and zip code in 1990/1991) matched with a state and county (and zip code in 1990/1991) from the CRF, the SMSA/MSA from the CRF was added to each respondent's record.
  2. The NLSY79 data, with SMSA/MSA added when there was a match on county and state of residence was then merged with the County and City Data Book data files.

Hand-edits and changes in matching procedures

In creating the 1989-1994 geocode data, the same logical procedures were applied in identifying cases requiring individual examination. However, the automation of the decision rules and procedures to check for and identify such cases resulted in a substantial reduction in the number of cases requiring hand-editing.

1989-1994

The effect of the 1989 phone verification procedures on the ability to detect errors in the NORC geocode data may also affect mobility rates between 1988 and 1989. Due to time and personnel constraints, it was not possible to examine every case that did not initially match on the state, county, and zip codes.

In the 1989 procedure the geocodes established by the phone number were compared to the geocodes received directly from NORC. By using the 1989 CHRR-edited versions of the geocodes for comparison, updates and corrections that were made to the geocodes during the 1989 hand-editing processes were incorporated. This reduced the number of mismatches between the geocode information based upon the current phone number and the respondent-reported geocode information and increased the amount of consistency observed between survey years. The number of cases requiring individual examination was thereby reduced.

From this point, the procedures closely follow those applied in constructing the 1988 geocode data, with minor modifications. For 1989, CRF matching was based upon state and county only for the purposes of the final matching of information from the County and City Data Book data. A match on state, county, and zip was also required to construct a variable reflecting a respondent's SMSA/non-SMSA residence status for inclusion in the NLSY79 main data file. This match, which was included in the geocode procedures prior to 1989, was done separately for the 1989 release when the new set of initial procedures was instituted. To streamline programming tasks, however, the zip information was reinserted in the CRF matching program for 1990. Therefore, the CRF matching for the 1990 geocode data was again based upon state, county, and zip code, as it had been prior to 1989.

In earlier survey years, residence information was usually collected by NORC interviewers only when there was a change in that information from the previous interview. In 1990, however, an effort was made to get current information for all respondents. Many of the cases in this current update information also included counties that have been inconclusive (even in case-by-case hand-editing) in previous years. These are generally cases in which a zip code spans more than one county, and for which valid county data is missing from the respondent's reported residence information. For such cases, the possibility existed in the 1989 (and prior) data that counties assigned based upon such multiple-county zip codes might be in error in a small number of cases. This would result in the assignment of a county adjacent to the county in which the respondent actually lived. To the extent that current update information for the county of residence in 1990 showed the assigned county in 1989 to be in error, mobility determinations may have been affected. In contrast, using the 1989 CHRR-edited versions of the geocodes for comparison with the current geocode information should have improved the accuracy of mobility ratings. This is a more dependable confirmation of past geocode information, eliminating the need to make individual determinations in many cases with multiple-county zip codes as discussed above.

1996-2002 Geocode data creation procedure

The procedures for the creation of the 1996 and subsequent geocode data changed from those used in previous years. Software packages were used to create the data for 1996-2008. The following briefly outlines the process used in these survey years.

Although different software packages were used, the procedures for data creation were essentially the same across these years. Three graduated matching methods were applied, depending on the quality of the address data available.

  1. An automated match was done between the respondent's address data and the software database. Address records with matching street segments were appended with the matching address, coordinates (latitude and longitude values for a specific location), Census information (county, tract, and block group codes for an address), FIPS codes for state, county, MCD, and MSA. In some cases, addresses had to be cleaned before software matching could be done. Cleaning involves steps such as standardizing the address format, correcting obvious misspellings, identifying apartment numbers and locating them in the correct field, etc. It does not include any changes that might result in a change in the actual address location.
  2. For some addresses the procedure outlined in step #1 failed to produce a match between the respondent's address data and the software database. For these cases in 1996-1998, individual respondent addresses were temporarily corrected in order to match them to the software database. By correcting obvious errors and referring to lists of valid address components, a map display, and commercial maps, a temporary working address was constructed; this was used to assign geocodes to these cases. These temporary address corrections were made in a working file to test the improvements in matching to the software database. The original address data remained unchanged. Successful address corrections were matched by this method and geocodes assigned accordingly. In 2000-2008, for cases failing Step #1, geocode staff used software to locate the correct street. If the street number could be located along this street, the latitude and longitude were assigned. However, some streets in software databases do not include information about street numbers. If this is the case, the address is manually located in the center of the street. The street is then classified as either a short street or a long street. Long streets cross Census tract or block group boundaries while short streets do not. As a result, the level of certainty about geographical information is much higher for short streets than for long streets.
  3. Addresses unmatched by either of the first two procedures were assigned latitude and longitude coordinates and related Census data according to a 5-digit ZIP centroid. A centroid is essentially the mid-point of a ZIP Code area. Centroid matches were made only for addresses that could not been matched by any other means. Addresses with ZIP codes that were no longer current were appended with latitude and longitude coordinates only.

The procedures outlined in steps #2 and #3 approximate the hand-editing process described in previous survey years for records with different degrees of matched address data.

2004-2022 Geocode data creation procedure

For survey years 2004-2012, a software called ArcGIS (ArcMap 9.2 in 2006 - 2012) was used in the creation of the geocode data, while Maptitude 2014 was used for survey year 2014. Maptitude software updated annually was used to create geocode data for each survey year, through the current round. The procedures for data creation were essentially the same as those used in 1996-2002.

Three graduated matching methods were applied, depending on the quality of the address data available.

  1. An automated match was done between the respondent's locating address data and the ArcGIS/Maptitude database. In some cases, addresses had to be cleaned before they could be matched by ArcGIS/Maptitude. Cleaning involves steps such as standardizing the address format, correcting obvious misspellings and locating them in the correct field, etc. It does not include any changes that might result in a change in the actual address location.
  2. For some addresses, the procedure outlined in Step #1 failed to produce a match between the respondent's address data and the ArcGIS/Maptitude database. In these cases, geocode staff used ArcGIS/Maptitude to locate the correct street. If the street number could be located along this street, the latitude and longitude were assigned. However, some streets in the ArcGIS/Maptitude database do not include information about street numbers. If this is the case, the address is manually located in the center of the street. The street is then classified as either a short street or a long street. Long streets cross Census tract or block group boundaries while short streets do not. As a result, the level of certainty about geographical information is much higher for short streets than for long streets.
  3. Addresses unmatched by either of the first two procedures were assigned latitude and longitude coordinates according to a 5-digit zip centroid. A centroid is essentially the midpoint of a zip code area. The geographic information is less certain for respondents located using the zip centroid method.

Researchers can identify the method used to locate the respondent's address by using the variable "GEO10" which provides information about the quality of the geographic match. This variable differentiates between addresses located based on the actual address, in the center of a short street, in the center of a long street, or using the zip centroid method. This variable can be used to determine the level of certainty for the respondent's geographic data.

Supplementary created variables

Urban-Rural and SMSA/CBSA-Central City residence variables

The procedures for creating the Urban-Rural and SMSA/CBSA-Central City residence variables (released in the KEYVARS area of interest) were modified for the 2000 public release. In 2000 and later survey years, these variables were created with the same software used to create the other geocode data.

For 2004-present, the Urban-Rural and CBSA-principal city variables. If the respondent's residence was located using a street name match (method 2 above) or a zip centroid match (method 3), the CBSA-Principal City and Urban/Rural variables are further evaluated. For the CBSA-Principal City variable, if the street or zip code falls completely inside or outside the boundaries of the CBSA and the principal city, then the respondent is assigned to the appropriate status. If the street or zip code crosses the boundaries of the CBSA and the central city, then the respondent is coded as CBSA, principal city status unknown. Similarly, respondents are only assigned to an urban or rural status if their entire street or zip code lies within an urban or rural area. If the street or zip code crosses an urban/rural boundary, the respondent is assigned to an unknown status.

For further discussion of these variables, see Appendix 6: Urban-Rural and SMSA/CBSA-Central City Variables in the main file NLSY79 Codebook Supplement.

Migration History variables

In NLS79 survey years 2000-2022, respondents who had moved to a different county or state since the date of last interview were asked to report each address and the dates of each move. The FIPS code for the state and county of each address are included in the 2022 geocode data. The address items collected are found in the geocode files titled "survey_and_created_variables" and in the questionnaire and codebook, with question names beginning with "MIGR_". Similar migration histories were collected in several early survey years of the NLSY79.

Distance measures variables

A series of variables was added with the 2006 geocode release containing the collapsed distance between each pair of residential addresses reported by the respondent for all survey years and indicating whether the respondent changed zipcode between each pair of addresses. These data have been updated for the 2022 release with more information for many address pairs in various survey years added.

Editing/quality of match variables

A variable named "GEO10" provides information about the quality of the respondent's address match and the method used to locate the address. In 1994 and prior years, GEO10 contains information on the degree of match between different address elements. Between 1996 and 2004, GEO10 identifies whether the county was assigned based on the respondent-provided address or the zip centroid method. In 2006-2022, this variable differentiates between addresses located based on the actual address, the center of a short street, in the center of a long street or using a zip centroid method. This variable can be used to determine the level of certainty for the respondent's geographic data.

National Death Index (NDI) data

The round 30 (2022) data release contains information regarding cause, dates and location of death for deceased respondents for whom a matching death certificate was returned from an NDI search. Variables depicting the cause, year and region of death are restricted to the Geocode data release. Variables containing the month and state, territory or country of death are further restricted to the Zipcode data release. For further information on available variables and access requirements for restricted data, see the Health section for information on NDI related variables. In addition, NLSY79 Attachment 8: Health Codes, contains an explanation of the matching process and coding for underlying cause of death.  

Missing data

The missing data values for all items on the geocode data files are-3, -4 and -5. The -5 values indicate a noninterview for a given year. -3 codes in the data after 1996 indicate respondents whose latitude and longitude of current residence could not be determined. Respondents who have a -4 value in the data for any variables from the County and City Data Book or other residence indicators fall into the following categories:

  1. Respondents who were in the military or who had an APO address
  2. Respondents who were residing outside of the United States
  3. Respondents whose state or county codes could not be determined
  4. Respondents who reside in a county or SMSA/MSA for which the County and City Data Book is missing data for that geographic location for that specific item
  5. Respondents who do not reside in an SMSA for any survey year 1979-1982 will be missing SMSA level environmental variables for that year
  6. Respondents whose state, county, and zip codes for any survey year 1979-1982 do not lead to an unambiguous SMSA designation. This generally applies only to a small number of respondents living in New England.
  7. Respondents residing in the New England states of Connecticut, Maine Massachusetts, New Hampshire, Rhode Island and Vermont who did not match on county, state and zip code on the 1982 or 1983 CRF are coded -4 on all of the metropolitan statistical area variables with NECMA codes for any survey years 1983-1987 that they resided in those areas.
  8. In the 1988-2000 NLSY79 geocode data, respondents residing in the New England states of Connecticut, Maine Massachusetts, New Hampshire, Rhode Island and Vermont who did not match on county, state and zip code on the CRF are coded -4 on all of the 1983 metropolitan statistical area variables with NECMA codes for the survey years 1988-1998.

Use of the file

Finally, we have a few notes and suggestions concerning the use of these NLSY79 geographic data.

The NLSY79 geocode data should not be used in any fashion that would endanger the confidentiality of any sample member. Only those users who have signed a written licensing agreement consenting to protect respondent confidentiality and to other conditions, who agree not to make, or allow to be made, unauthorized copies of the geocode file, and who also agree to indemnify the Center for Human Resource Research for all claims arising from misuse of the file may use these data.

The data and the accompanying documentation should be used in conjunction with the printed versions of the 1972, 1977, 1983, 1988, and 1994 County and City Data Books that correspond to each variable desired in order to have complete information regarding variable descriptions and coding idiosyncrasies. No variables from the County and City Data Books have been included in the geocode data after 2002. Users wishing to attach specific individual items from that or other sources may do so by using the state, county and/or various MSA variables to merge data.

Edited variables describing the location of each respondent's residence are created as a result of this matching process. The first two variables, question names "GEO1" and "GEO2", provide the FIPS code for the respondent's county and state of residence. Two versions of the county and state of residence variables are included in the geocode data for most survey years from 1979-92. The state and county variables appearing at the beginning of each year's variable listing are the edited versions that incorporate all revisions deemed necessary in the hand-editing process for each year. These edited variables are used in the construction of the final geocode data. The state and county variables appearing near the end of the variable listing for most of those years are the unedited version, as received directly from NORC. It is generally recommended that users employ the edited version as these contain corrected geocodes based upon the most current available information.

Researchers are encouraged to use caution during analyses because several modifications were made since 1987 in the programming procedures that create the geocode data files. Please refer to this document for discussion of specific modifications of note.

In years for which zip code centroids were assigned, users should note that there is some small possibility that a respondent's county may be misassigned using the centroid method in cases where more than one county is represented in a given ZIP code. In these cases, it is possible that a respondent might live in one county but that the center of the ZIP code area is in another county. However, since ZIP codes infrequently cross county lines and less than a quarter of respondents' counties were assigned using the ZIP centroid method, the number of counties incorrectly assigned should be quite small.

Appendix 7: Unemployment Rates

The NLSY79 unemployment rate variables are constructed using state and area labor force data from the May publication of Employment and Earnings for the month of March of each survey year. Employment and Earnings is published by the U.S. Department of Labor, Bureau of Labor Statistics and lists the civilian labor force and number of unemployed persons for every state and selected metropolitan areas.

The figures provided for the state and selected metropolitan and micropolitan statistical areas are used to compute the unemployment rate for the portion or balance of the state that is not represented in a metropolitan or micropolitan statistical area. If a respondent resides in a metropolitan or micropolitan area that is listed in Employment and Earnings, then the unemployment rate is the unemployment rate for that metropolitan or micropolitan area. Otherwise, the unemployment rate is the computed balance of state unemployment rate for the state in which the respondent resides.

From 1979-2002, the respondent's metropolitan statistical area was assigned based on the county, state, and zip code of current residence. Beginning in 2004, the metropolitan or micropolitan statistical area is assigned based on the latitude and longitude of current residence. (For a detailed discussion of the hand-editing and merging process with other data files used to create the geographic variables, including the metropolitan statistical area, see Appendix 10: Geocode Documentation)

As with other geographic based variables, respondents who are in the military, who are living outside of the United States, or who have invalid geographic data for a given survey year are valid skips on these variables.

NLSY79 Appendix 30: Programs for Assorted Created NLSY79 Variables

This appendix contains programs that produce a number of created variables in the current round (R30), survey year 2022.

Click below to view programming code.

/************************ Variables Used ************************/
/**Variable Names in data release    Variable Names in program**/
CURDATE~M_2022		                 CURMO
CURDATE~Y_2022		                 CURYR
Q1-3_A~M_1979		                 BRTHMO79
Q1-3_A~M _1979		                 BRTHYR79
Q1-3_A~M_1981		                 BRTHMO81
Q1-3_A~Y_1981		                 BRTHYR81
/*--------------------------------------------------------------*/ curmo=CURDATE_M; curday=CURDATE_D; curyr=CURDATE_Y; if brthyr81 >= -4 then do; birthmo=brthmo81; birthda=brthda81; birthyr=brthyr81+1900; end; else do; birthmo=brthmo79; birthda=brthda79; birthyr=brthyr79+1900; end; intmo=curmo; intyr=curyr; intyr = curyr; ageatint=-4; if (intyr > 0 and birthyr > 0 and intmo > 0 and birthmo > 0) then do; if (intmo > birthmo) then ageatint = intyr - birthyr; else if (intmo <= birthmo) then ageatint = intyr - birthyr - 1; end; else ageatint = -5;

/************************ Variables Used ************************/
/**Variable Names in data release    Variable Names in program**/
 CURDATE~Y_2022                      CURDATEY   
 Q2-1_2022                           Q2_1       
 Q2-2_2022                           Q2_2       
 Q2-3-0A_2022                        NEEDDATE   
 Q2-3-0B~M_2022                      MO_MSINCORR
 Q2-3-0B~Y_2022                      YR_MSINCORR
 Q2-3A_2022                          Q2_3A      
 Q2-4AC_2022                         CURMARNOCHG
 Q2-4A_2022                          CURMARCHG  
 Q2-5A1B.01_2022                     LSTMARREPL1
 Q2-5A1B.02_2022                     LSTMARREPL2
 Q2-5A1B.03_2022                     LSTMARREPL2
 Q2-5A1.01_2022                      CHGL1_SDW  
 Q2-5A1.02_2022                      CHGL2_SDW  
 Q2-5A1.03_2022                      CHGL3_DRW  
 Q2-5A1_A.01_2022                    CHGL1_DRW  
 Q2-5A1_A.02_2022                    CHGL2_DRW  
 Q2-5B1.01~M_2022                    MOCHG1A    
 Q2-5B1.01~Y_2022                    YRCHG1A    
 Q2-5B2.01~M_2022                    MOCHG1B    
 Q2-5B2.01~Y_2022                    YRCHG1B    
 Q2-5B2.02~M_2022                    MOCHG2B    
 Q2-5B2.02~Y_2022                    YRCHG2B    
 Q2-5B2.03~M_2022                    MOCHG3B    
 Q2-5B2.03~Y_2022                    YRCHG3B    
 Q2-5B3.01~M_2022                    MOCHG1C    
 Q2-5B3.01~Y_2022                    YRCHG1C    
 Q2-5B3.02~M_2022                    MOCHG2C    
 Q2-5B3.02~Y_2022                    YRCHG2C    
 Q2-5B3.03~M_2022                    MOCHG3C    
 Q2-5B3.03~Y_2022                    YRCHG3C    
 Q2-5C1.01_2022                      ANYCHGAFT1 
 Q2-5C1.02_2022                      ANYCHGAFT2 
 Q2-5C1.03_2022                      ANYCHGAFT3 
 Q2-5C1BB.01_2022                    MSAFTC1    
 Q2-5C1BB.02_2022                    MSAFTC2    
 Q2-5C1BB.03_2022                    MSAFTC3    
 Q2-5E_2022                          Q2_5E      
 Q2-5F_2022                          Q2_5F      
 SYMBOL_MARCODE_2022                 MARCODE    
 SYMBOL_OLDMARCODE_2022              OLDMARCODE 
 SYMBOL_MARCODEDLI_2022              MARCODEDLI
/*--------------------------------------------------------------*/
intv2022=1;
if CURDATEY=-5 then intv2022=0;
/* 1st marital status change code */
marst_chng1_type = -4;
if (CHGL1_SDW > -4) then marst_chng1_type = CHGL1_SDW;
else if (CHGL1_DRW > -4) then marst_chng1_type = CHGL1_DRW;
else if (MOCHG1A > -4) then marst_chng1_type = 1;
else if (MOCHG1B > -4) then marst_chng1_type = 5;
else if (CHGL1_SDW = -4 & MOCHG1A = -4 & MOCHG1B = -4) then marst_chng1_type = -4;
else marst_chng1_type = -3;
/* 1st marital status change date */
if (MOCHG1A > -4) then do;
marst_chng1_date_m = MOCHG1A;
marst_chng1_date_y = YRCHG1A;
end;
else if (MOCHG1B > -4) then do;
marst_chng1_date_m = MOCHG1B;
marst_chng1_date_y = YRCHG1B;
end;
else if (MOCHG1C > -4) then do;
marst_chng1_date_m = MOCHG1C;
marst_chng1_date_y = YRCHG1C;
end;
else if (MOCHG1A = -4 & MOCHG1B = -4 & MOCHG1C = -4) then do;
marst_chng1_date_m = -4;
marst_chng1_date_y = -4;
end;
/* 2nd-3rd marital status change code */
CHGL3_SDW=-4; MOCHG2A=-4; MOCHG3A=-4; YRCHG2A=-4; YRCHG3A=-4;
array mschgcd (n) marst_chng2_type marst_chng3_type;
array q2_5a1  (n) CHGL2_SDW CHGL3_SDW;
array q2_5a1a (n) CHGL2_DRW CHGL3_DRW;
array q2_5b1m (n) MOCHG2A MOCHG3A;
array q2_5b2m (n) MOCHG2B MOCHG3B;
do n=1 to 2;
if (q2_5a1 > -4) then mschgcd = q2_5a1;
else if (q2_5a1a > -4) then mschgcd = q2_5a1a;
else if (q2_5b1m > -4) then mschgcd = 5;
else if (q2_5b2m > -4) then mschgcd = 5;
else if (q2_5a1 = -4 & q2_5b1m = -4) then mschgcd = -4;
else mschgcd = -3;
end;
/* 2nd-3rd marital status change date */
array mschmo  (n) marst_chng2_date_m marst_chng3_date_m;
array mschyr  (n) marst_chng2_date_y marst_chng3_date_y;
*array q2_5b1m (n) MOCHG2A MOCHG3A;
array q2_5b1y (n) YRCHG2A YRCHG3A;
*array q2_5b2m (n) MOCHG2B MOCHG3B;
array q2_5b2y (n) YRCHG2B YRCHG3B;
array q2_5b3m (n) MOCHG2C MOCHG3C;
array q2_5b3y (n) YRCHG2C YRCHG3C;
do n=1 to 2;
if (q2_5b1m > -4) then do;
        mschmo = q2_5b1m;
        mschyr = q2_5b1y;
        end;
else if (q2_5b2m > -4) then do;
        mschmo = q2_5b2m;
        mschyr = q2_5b2y;
        end;
else if (q2_5b3m > -4) then do;
        mschmo = q2_5b3m;
        mschyr = q2_5b3y;
        end;
else if (q2_5b1m = -4 & q2_5b2m = -4 & q2_5b3m = -4) then do;
        mschmo = -4;
        mschyr = -4;
        end;
end;
array finvars   marst_chng1_type marst_chng1_date_m marst_chng1_date_y
                marst_chng2_type marst_chng2_date_m marst_chng2_date_y
                marst_chng3_type marst_chng3_date_m marst_chng3_date_y;
do i=1 to dim(finvars);
   if intv2022=0 then finvars[i]=-5;
end;
MARRCHG122=marst_chng1_type; 
MARRCHG1MO=marst_chng1_date_m; 
MARRCHG1YR=marst_chng1_date_y; 
MARRCHG222=marst_chng2_type; 
MARRCHG2MO=marst_chng2_date_m; 
MARRCHG2YR=marst_chng2_date_y; 
MARRCHG322=marst_chng3_type; 
MARRCHG3MO=marst_chng3_date_m; 
MARRCHG3YR=marst_chng3_date_y; 

/************************ Variables Used ************************/
/**Variable Names in data release    Variable Names in program**/
Q2-4AC_2022                          CURMARNC  
Q2-5C1BB.01_2022                     MARCHNG1  
Q2-5C1BB.02_2022                     MARCHNG2  
Q2-5C1BB.03_2022                     MARCHNG3
RELSPPTR22                           SPPTRTYPE
/*--------------------------------------------------------------*/
/****************************************************************/
/*Construction for key marital status variables                 */
/****************************************************************/
array changes MARCHNG1 MARCHNG2 MARCHNG3;
finchange=.;
do i=1 to 3;
  if changes[i]>=-2 then finchange=changes[i];
end;
newmarstat=CURMARNC;
if CURMARNC=-4 then newmarstat=finchange;
MARSTAT_KEY=newmarstat;
if newmarstat in (4 5) then MARSTAT_KEY=1;
MARSTAT_COL=3;
if MARSTAT_KEY=0 then MARSTAT_COL=1;
else if MARSTAT_KEY=1 and spptrtype=1 then MARSTAT_COL=2;
else if MARSTAT_KEY=-5 then MARSTAT_COL=-5;

/************************ Variables Used ************************/
/**Variable Names in data release    Variable Names in program**/
CASEID                               NORCID   
CURDATE~D                            CURDAY   
CURDATE~M                            CURMO    
CURDATE~Y                            CURYR    
SYMBOL_PCY_YEAR                      PCYYRA   
SYMBOL_PCY_YEARNUM                   PCYYRN  
/*--------------------------------------------------------------*/ length pcyyra $4.; if (norcid = .) then norcid = -4; if (curyr = .) then curyr = -4; if (curmo = .) then curmo = -4; if (curday = .) then curday = -4; if (pcyyrn = .) then pcyyrn = -4; past_calendar_year = curyr; if (pcyyra = '2021') then past_calendar_year = 2021; else if (pcyyra = '2022') then past_calendar_year = 2022;

/************************ Variables Used ************************/
/**Variable Names in data release    Variable Names in program**/                                    
CURDATE~D                            CURDATE_D                        
CURDATE~M                            CURDATE_M                        
CURDATE~Y                            CURDATE_Y                        
CASEID                               norcid                           
PUBLIC_ID                            pubid                            
HHI_FINAL_RELCODE.01                 HHI_FINAL_RELCODE_01                   
HHI_FINAL_RELCODE.02                 HHI_FINAL_RELCODE_02                   
HHI_FINAL_RELCODE.03                 HHI_FINAL_RELCODE_03                   
HHI_FINAL_RELCODE.04                 HHI_FINAL_RELCODE_04                   
HHI_FINAL_RELCODE.05                 HHI_FINAL_RELCODE_05                   
HHI_FINAL_RELCODE.06                 HHI_FINAL_RELCODE_06                   
HHI_FINAL_RELCODE.07                 HHI_FINAL_RELCODE_07                   
HHI_FINAL_RELCODE.08                 HHI_FINAL_RELCODE_08                   
HHI_FINAL_RELCODE.09                 HHI_FINAL_RELCODE_09                   
HHI_FINAL_RELCODE.10                 HHI_FINAL_RELCODE_10                   
HHI_FINAL_STATCODE.01                HHI_FINAL_STATCODE_01                  
HHI_FINAL_STATCODE.02                HHI_FINAL_STATCODE_02                  
HHI_FINAL_STATCODE.03                HHI_FINAL_STATCODE_03                  
HHI_FINAL_STATCODE.04                HHI_FINAL_STATCODE_04                  
HHI_FINAL_STATCODE.05                HHI_FINAL_STATCODE_05                  
HHI_FINAL_STATCODE.06                HHI_FINAL_STATCODE_06                  
HHI_FINAL_STATCODE.07                HHI_FINAL_STATCODE_07                  
HHI_FINAL_STATCODE.08                HHI_FINAL_STATCODE_08                  
HHI_FINAL_STATCODE.09                HHI_FINAL_STATCODE_09                  
HHI_FINAL_STATCODE.10                HHI_FINAL_STATCODE_10 
/*--------------------------------------------------------------*/ array varsall (m) CURDATE_D CURDATE_M CURDATE_Y norcid pubidf HHI_FINAL_RELCODE_01 HHI_FINAL_RELCODE_02 HHI_FINAL_RELCODE_03 HHI_FINAL_RELCODE_04 HHI_FINAL_RELCODE_05 HHI_FINAL_RELCODE_06 HHI_FINAL_RELCODE_07 HHI_FINAL_RELCODE_08 HHI_FINAL_RELCODE_09 HHI_FINAL_RELCODE_10 HHI_FINAL_STATCODE_01 HHI_FINAL_STATCODE_02 HHI_FINAL_STATCODE_03 HHI_FINAL_STATCODE_04 HHI_FINAL_STATCODE_05 HHI_FINAL_STATCODE_06 HHI_FINAL_STATCODE_07 HHI_FINAL_STATCODE_08 HHI_FINAL_STATCODE_09 HHI_FINAL_STATCODE_10; do over varsall; if missing(varsall) then varsall=-4; end; * ==============================================================================; * Compute family sizes; * ==============================================================================; /* --- Compute "family size '22" and "spouse '22" --- */ spou22=0; famsize=1; nonfamsize=0; if (hhi_final_relcode_01 = -5) then famsize = -5; array relation (i) hhi_final_relcode_01 - hhi_final_relcode_10; array statc (i) hhi_final_statcode_01 - hhi_final_statcode_10; /* Go thru all the relations and (1) if there is a relation (blood or by law), increase the family size, foster relations don't count (2) check whether one of them is a spouse */ /* does 57 "husband or brother-in-law" and 58 "wife or sister-in-law" count as spouse? */ /* 75 is husband, 76 is wife */ do i = 1 to 10; if (spou22 = 0 & relation = 1 ) then spou22=1; if ((relation <= 0) | (33 <= relation <= 36) | relation = 45 | relation = 46 | (50 <= relation <= 54) | (relation > 66)) then famsize = famsize; else famsize = famsize + 1; end; do i = 1 to 10; if ((33 <= relation <= 36) | relation = 45 | relation = 46 | (50 <= relation <= 54) | (relation > 66)) then nonfamsize = (nonfamsize +1); end;

/************************ Variables Used ************************/
/**Variable Names in data release    Variable Names in program**/
QES-76Q.## 			                 qes_76q_##
QES-76S.## 			                 qes_76s_##
QES-76T.## 			                 qes_76t_##
HRP## 				                 hrp##
HRP#_WHRLY2 		                 hrp_whrly#
/*--------------------------------------------------------------*/ array ophrly (i) qes_76q_01-qes_76q_14; array ohrpot (i) qes_76s_01-qes_76s_14; array ohrp (i) qes_76t_01-qes_76t_14; array hrp (i) hrp1-hrp14; array hrp_rec (i) hrp_rec1-hrp_rec14; array hrp_w (i) hrp1_whrly2 hrp2_whrly2 hrp3_whrly2 hrp4_whrly2 hrp5_whrly2 hrp6_whrly2 hrp7_whrly2 hrp8_whrly2 hrp9_whrly2 hrp10_whrly2 hrp11_whrly2 hrp12_whrly2 hrp13_whrly2 hrp14_whrly2; do i=1 to 14; if ophrly=1 then do; if ohrpot>-4 then hrp_rec=ohrpot; else if ohrp>-4 then hrp_rec=ohrp; end; hrp_w=-4; if hrp_rec>0 then hrp_w=hrp_rec; else if (hrp_rec=0|hrp_rec=-1| hrp_rec=-2|hrp_rec=-3) and hrp<0 then hrp_w=hrp_rec; else if (hrp_rec=0|hrp_rec=-1| hrp_rec=-2|hrp_rec=-3) and hrp>0 then hrp_w=hrp; else hrp_w=hrp; end; run;

/************************ Variables Used ************************/
/**Variable Names in program(## = 01/10)/Variable Names in data release(## = 01/10)**/
BUSOWN_LINT_22 BUSOWN-LINT (XRND)
BUSOWN_1_22/xr BUSOWN-1 (XRND)
BUSOWN_2_22/xr BUSOWN-2 (XRND)
BUSOWN_5_##_Y_22/xr BUSOWN-5. ##~Y (XRND)
BUSOWN_6_##_M_22/xr BUSOWN-6. ##~M (XRND)
BUSOWN_6_##_Y_22/xr BUSOWN-6. ##~Y (XRND)
BUSOWN_7_##_22/xr BUSOWN-7. ## (XRND)
BUSOWN_9_##_22/xr BUSOWN-9. ## (XRND)
BUSOWN_10_##_0_22/xr BUSOWN-10. ##_000000 (XRND)
BUSOWN_10_##_1_22/xr BUSOWN-10. ##_000001 (XRND)
BUSOWN_10_##_2_22/xr BUSOWN-10. ##_000002 (XRND)
BUSOWN_10_##_3_22/xr BUSOWN-10. ##_000003 (XRND)
BUSOWN_10_##_4_22/xr BUSOWN-10. ##_000004 (XRND)
BUSOWN_10_##_5_22/xr BUSOWN-10. ##_000005 (XRND)
BUSOWN_10_##_6_22/xr BUSOWN-10. ##_000006 (XRND)
BUSOWN_10_##_7_22/xr BUSOWN-10. ##_000007 (XRND)
BUSOWN_11_##_22/xr BUSOWN-11. ## (XRND)
BUSOWN_11_UNF1_##_22/xr BUSOWN-11_UNF1. ## (XRND)
BUSOWN_11_UNF5_##_22/xr BUSOWN-11_UNF5. ## (XRND)
BUSOWN_11_UNF6_##_20/xr BUSOWN-11_UNF6. ## (XRND)
BUSOWN_11_UNF7_##_20/xr BUSOWN-11_UNF7. ## (XRND)
BUSOWN_12_##_22/BUSOWN-12. ## (XRND)
BUSOWN_14_##_22/BUSOWN-14. ## (XRND)
BUSOWN_15_##_22/BUSOWN-15. ## (XRND)
BUSOWN_16_##_22/BUSOWN-16. ## (XRND)
BUSOWN_16_TRUNC_##_22/BUSOWN-16_TRUNC. ## (XRND)
BUSOWN_17_##_22/BUSOWN-17. ## (XRND)
BUSOWN_18_##_Y_22/BUSOWN-18. ##~Y (XRND)
BUSOWN_19_##_22/BUSOWN-19. ## (XRND)
BUSOWN_20_##_22/BUSOWN-20. ## (XRND)
BUSOWN_21_##_22/BUSOWN-21. ## (XRND)
BUSOWN_22_##_22/BUSOWN-22. ## (XRND)
BUSOWN_23A_22/BUSOWN-23A (XRND)
BUSOWN_23B_22/BUSOWN-23B (XRND)
BUSOWN_24A_22/BUSOWN-24A (XRND)
BUSOWN_24B_22/BUSOWN-24B (XRND)
BUSOWN_25_22/BUSOWN-25 (XRND)
BUSOWN_27_22/BUSOWN-27 (XRND)
BUSOWN_28A_22/BUSOWN-28A (XRND)
BUSOWN_28B_22/BUSOWN-28B (XRND)
BUSOWN_29_22/BUSOWN-29 (XRND)
 
    BUSOWN_LINT_22       = BUSOWN_LINT;        
    BUSOWN_1_22          = BUSOWN_1;           
    BUSOWN_2_22          = BUSOWN_2;           
    BUSOWN_5_01_Y_22     = BUSOWN_5_01_Y;      
    BUSOWN_5_02_Y_22     = BUSOWN_5_02_Y;  
    BUSOWN_5_03_Y_22     = BUSOWN_5_03_Y;      
    BUSOWN_5_04_Y_22     = BUSOWN_5_04_Y;  
    BUSOWN_5_05_Y_22     = BUSOWN_5_05_Y;      
    BUSOWN_5_06_Y_22     = BUSOWN_5_06_Y;  
    BUSOWN_5_07_Y_22     = BUSOWN_5_07_Y;      
    BUSOWN_5_08_Y_22     = BUSOWN_5_08_Y;  
    BUSOWN_5_09_Y_22     = BUSOWN_5_09_Y;      
    BUSOWN_5_10_Y_22     = BUSOWN_5_10_Y;
 
    BUSOWN_6_01_M_22     = BUSOWN_6_01_M;      
    BUSOWN_6_01_Y_22     = BUSOWN_6_01_Y;      
    BUSOWN_6_02_M_22     = BUSOWN_6_02_M;      
    BUSOWN_6_02_Y_22     = BUSOWN_6_02_Y;   
    BUSOWN_6_03_M_22     = BUSOWN_6_03_M;      
    BUSOWN_6_03_Y_22     = BUSOWN_6_03_Y;   
    BUSOWN_6_04_M_22     = BUSOWN_6_04_M;      
    BUSOWN_6_04_Y_22     = BUSOWN_6_04_Y;   
    BUSOWN_6_05_M_22     = BUSOWN_6_05_M;      
    BUSOWN_6_05_Y_22     = BUSOWN_6_05_Y;   
    BUSOWN_6_06_M_22     = BUSOWN_6_06_M;      
    BUSOWN_6_06_Y_22     = BUSOWN_6_06_Y;   
    BUSOWN_6_07_M_22     = BUSOWN_6_07_M;      
    BUSOWN_6_07_Y_22     = BUSOWN_6_07_Y;   
    BUSOWN_6_08_M_22     = BUSOWN_6_08_M;      
    BUSOWN_6_08_Y_22     = BUSOWN_6_08_Y;   
    BUSOWN_6_09_M_22     = BUSOWN_6_09_M;      
    BUSOWN_6_09_Y_22     = BUSOWN_6_09_Y;   
    BUSOWN_6_10_M_22     = BUSOWN_6_10_M;      
    BUSOWN_6_10_Y_22     = BUSOWN_6_10_Y;   
 
    BUSOWN_7_01_22       = BUSOWN_7_01;        
    BUSOWN_7_02_22       = BUSOWN_7_02;  
    BUSOWN_7_03_22       = BUSOWN_7_03;        
    BUSOWN_7_04_22       = BUSOWN_7_04;  
    BUSOWN_7_05_22       = BUSOWN_7_05;        
    BUSOWN_7_06_22       = BUSOWN_7_06;  
    BUSOWN_7_07_22       = BUSOWN_7_07;        
    BUSOWN_7_08_22       = BUSOWN_7_08;  
    BUSOWN_7_09_22       = BUSOWN_7_09;        
    BUSOWN_7_10_22       = BUSOWN_7_10;  
    BUSOWN_9_01_22       = BUSOWN_9_01;        
    BUSOWN_9_02_22       = BUSOWN_9_02;   
    BUSOWN_9_03_22       = BUSOWN_9_03;        
    BUSOWN_9_04_22       = BUSOWN_9_04;   
    BUSOWN_9_05_22       = BUSOWN_9_05;        
    BUSOWN_9_06_22       = BUSOWN_9_06;   
    BUSOWN_9_07_22       = BUSOWN_9_07;        
    BUSOWN_9_08_22       = BUSOWN_9_08;   
    BUSOWN_9_09_22       = BUSOWN_9_09;        
    BUSOWN_9_10_22       = BUSOWN_9_10;   
 
    BUSOWN_10_01_0_22    = BUSOWN_10_01_000000;     
    BUSOWN_10_01_1_22    = BUSOWN_10_01_000001;     
    BUSOWN_10_01_2_22    = BUSOWN_10_01_000002;     
    BUSOWN_10_01_3_22    = BUSOWN_10_01_000003;     
    BUSOWN_10_01_4_22    = BUSOWN_10_01_000004;     
    BUSOWN_10_01_5_22    = BUSOWN_10_01_000005;     
    BUSOWN_10_01_6_22    = BUSOWN_10_01_000006;     
    BUSOWN_10_01_7_22    = BUSOWN_10_01_000007;     
    BUSOWN_10_02_0_22    = BUSOWN_10_02_000000;     
    BUSOWN_10_02_1_22    = BUSOWN_10_02_000001;     
    BUSOWN_10_02_2_22    = BUSOWN_10_02_000002;     
    BUSOWN_10_02_3_22    = BUSOWN_10_02_000003;     
    BUSOWN_10_02_4_22    = BUSOWN_10_02_000004;     
    BUSOWN_10_02_5_22    = BUSOWN_10_02_000005;     
    BUSOWN_10_02_6_22    = BUSOWN_10_02_000006;     
    BUSOWN_10_02_7_22    = BUSOWN_10_02_000007; 
    BUSOWN_10_03_0_22    = BUSOWN_10_03_000000;     
    BUSOWN_10_03_1_22    = BUSOWN_10_03_000001;     
    BUSOWN_10_03_2_22    = BUSOWN_10_03_000002;     
    BUSOWN_10_03_3_22    = BUSOWN_10_03_000003;     
    BUSOWN_10_03_4_22    = BUSOWN_10_03_000004;     
    BUSOWN_10_03_5_22    = BUSOWN_10_03_000005;     
    BUSOWN_10_03_6_22    = BUSOWN_10_03_000006;     
    BUSOWN_10_03_7_22    = BUSOWN_10_03_000007;     
    BUSOWN_10_04_0_22    = BUSOWN_10_04_000000;     
    BUSOWN_10_04_1_22    = BUSOWN_10_04_000001;     
    BUSOWN_10_04_2_22    = BUSOWN_10_04_000002;     
    BUSOWN_10_04_3_22    = BUSOWN_10_04_000003;     
    BUSOWN_10_04_4_22    = BUSOWN_10_04_000004;     
    BUSOWN_10_04_5_22    = BUSOWN_10_04_000005;     
    BUSOWN_10_04_6_22    = BUSOWN_10_04_000006;     
    BUSOWN_10_04_7_22    = BUSOWN_10_04_000007;     
    BUSOWN_10_05_0_22    = BUSOWN_10_05_000000;     
    BUSOWN_10_05_1_22    = BUSOWN_10_05_000001;     
    BUSOWN_10_05_2_22    = BUSOWN_10_05_000002;     
    BUSOWN_10_05_3_22    = BUSOWN_10_05_000003;     
    BUSOWN_10_05_4_22    = BUSOWN_10_05_000004;     
    BUSOWN_10_05_5_22    = BUSOWN_10_05_000005;     
    BUSOWN_10_05_6_22    = BUSOWN_10_05_000006;     
    BUSOWN_10_05_7_22    = BUSOWN_10_05_000007;     
    BUSOWN_10_06_0_22    = BUSOWN_10_06_000000;     
    BUSOWN_10_06_1_22    = BUSOWN_10_06_000001;     
    BUSOWN_10_06_2_22    = BUSOWN_10_06_000002;     
    BUSOWN_10_06_3_22    = BUSOWN_10_06_000003;     
    BUSOWN_10_06_4_22    = BUSOWN_10_06_000004;     
    BUSOWN_10_06_5_22    = BUSOWN_10_06_000005;     
    BUSOWN_10_06_6_22    = BUSOWN_10_06_000006;     
    BUSOWN_10_06_7_22    = BUSOWN_10_06_000007;     
    BUSOWN_10_07_0_22    = BUSOWN_10_07_000000;     
    BUSOWN_10_07_1_22    = BUSOWN_10_07_000001;     
    BUSOWN_10_07_2_22    = BUSOWN_10_07_000002;     
    BUSOWN_10_07_3_22    = BUSOWN_10_07_000003;     
    BUSOWN_10_07_4_22    = BUSOWN_10_07_000004;     
    BUSOWN_10_07_5_22    = BUSOWN_10_07_000005;     
    BUSOWN_10_07_6_22    = BUSOWN_10_07_000006;     
    BUSOWN_10_07_7_22    = BUSOWN_10_07_000007;     
    BUSOWN_10_08_0_22    = BUSOWN_10_08_000000;     
    BUSOWN_10_08_1_22    = BUSOWN_10_08_000001;     
    BUSOWN_10_08_2_22    = BUSOWN_10_08_000002;     
    BUSOWN_10_08_3_22    = BUSOWN_10_08_000003;     
    BUSOWN_10_08_4_22    = BUSOWN_10_08_000004;     
    BUSOWN_10_08_5_22    = BUSOWN_10_08_000005;     
    BUSOWN_10_08_6_22    = BUSOWN_10_08_000006;     
    BUSOWN_10_08_7_22    = BUSOWN_10_08_000007;     
    BUSOWN_10_09_0_22    = BUSOWN_10_09_000000;     
    BUSOWN_10_09_1_22    = BUSOWN_10_09_000001;     
    BUSOWN_10_09_2_22    = BUSOWN_10_09_000002;     
    BUSOWN_10_09_3_22    = BUSOWN_10_09_000003;     
    BUSOWN_10_09_4_22    = BUSOWN_10_09_000004;     
    BUSOWN_10_09_5_22    = BUSOWN_10_09_000005;     
    BUSOWN_10_09_6_22    = BUSOWN_10_09_000006;     
    BUSOWN_10_09_7_22    = BUSOWN_10_09_000007;     
    BUSOWN_10_10_0_22    = BUSOWN_10_10_000000;     
    BUSOWN_10_10_1_22    = BUSOWN_10_10_000001;     
    BUSOWN_10_10_2_22    = BUSOWN_10_10_000002;     
    BUSOWN_10_10_3_22    = BUSOWN_10_10_000003;     
    BUSOWN_10_10_4_22    = BUSOWN_10_10_000004;     
    BUSOWN_10_10_5_22    = BUSOWN_10_10_000005;     
    BUSOWN_10_10_6_22    = BUSOWN_10_10_000006;     
    BUSOWN_10_10_7_22    = BUSOWN_10_10_000007;
     
    BUSOWN_11_01_22      = BUSOWN_11_01;       
    BUSOWN_11_02_22      = BUSOWN_11_02;       
    BUSOWN_11_03_22      = BUSOWN_11_03;       
    BUSOWN_11_04_22      = BUSOWN_11_04;       
    BUSOWN_11_05_22      = BUSOWN_11_05;       
    BUSOWN_11_06_22      = BUSOWN_11_06;       
    BUSOWN_11_07_22      = BUSOWN_11_07;       
    BUSOWN_11_08_22      = BUSOWN_11_08;       
    BUSOWN_11_09_22      = BUSOWN_11_09;       
    BUSOWN_11_10_22      = BUSOWN_11_10;       
    BUSOWN_11_UNF1_01_22 = BUSOWN_11_UNF1_01;  
    BUSOWN_11_UNF1_02_22 = BUSOWN_11_UNF1_02;  
    BUSOWN_11_UNF1_03_22 = BUSOWN_11_UNF1_03;  
    BUSOWN_11_UNF1_04_22 = BUSOWN_11_UNF1_04;  
    BUSOWN_11_UNF1_05_22 = BUSOWN_11_UNF1_05;  
    BUSOWN_11_UNF1_06_22 = BUSOWN_11_UNF1_06;  
    BUSOWN_11_UNF1_07_22 = BUSOWN_11_UNF1_07;  
    BUSOWN_11_UNF1_08_22 = BUSOWN_11_UNF1_08;  
    BUSOWN_11_UNF1_09_22 = BUSOWN_11_UNF1_09;  
    BUSOWN_11_UNF1_10_22 = BUSOWN_11_UNF1_10;
  
    BUSOWN_12_01_22      = BUSOWN_12_01;       
    BUSOWN_12_02_22      = BUSOWN_12_02; 
    BUSOWN_12_03_22      = BUSOWN_12_03;       
    BUSOWN_12_04_22      = BUSOWN_12_04; 
    BUSOWN_12_05_22      = BUSOWN_12_05;       
    BUSOWN_12_06_22      = BUSOWN_12_06; 
    BUSOWN_12_07_22      = BUSOWN_12_07;       
    BUSOWN_12_08_22      = BUSOWN_12_08; 
    BUSOWN_12_09_22      = BUSOWN_12_09;       
    BUSOWN_12_10_22      = BUSOWN_12_10;
 
    BUSOWN_14_01_22      = BUSOWN_14_01;       
    BUSOWN_14_02_22      = BUSOWN_14_02;    
    BUSOWN_14_03_22      = BUSOWN_14_03;       
    BUSOWN_14_04_22      = BUSOWN_14_04;    
    BUSOWN_14_05_22      = BUSOWN_14_05;       
    BUSOWN_14_06_22      = BUSOWN_14_06;    
    BUSOWN_14_07_22      = BUSOWN_14_07;       
    BUSOWN_14_08_22      = BUSOWN_14_08;    
    BUSOWN_14_09_22      = BUSOWN_14_09;       
    BUSOWN_14_10_22      = BUSOWN_14_10;
    
    BUSOWN_15_01_22      = BUSOWN_15_01;       
    BUSOWN_15_02_22      = BUSOWN_15_02;   
    BUSOWN_15_03_22      = BUSOWN_15_03;       
    BUSOWN_15_04_22      = BUSOWN_15_04;   
    BUSOWN_15_05_22      = BUSOWN_15_05;       
    BUSOWN_15_06_22      = BUSOWN_15_06;   
    BUSOWN_15_07_22      = BUSOWN_15_07;       
    BUSOWN_15_08_22      = BUSOWN_15_08;   
    BUSOWN_15_09_22      = BUSOWN_15_09;       
    BUSOWN_15_10_22      = BUSOWN_15_10;
   
    BUSOWN_16_01_22      = BUSOWN_16_01; 
    BUSOWN_16_02_22      = BUSOWN_16_02; 
    BUSOWN_16_03_22      = BUSOWN_16_03; 
    BUSOWN_16_04_22      = BUSOWN_16_04; 
    BUSOWN_16_05_22      = BUSOWN_16_05; 
    BUSOWN_16_06_22      = BUSOWN_16_06; 
    BUSOWN_16_07_22      = BUSOWN_16_07; 
    BUSOWN_16_08_22      = BUSOWN_16_08; 
    BUSOWN_16_09_22      = BUSOWN_16_09; 
    BUSOWN_16_10_22      = BUSOWN_16_10;
 
    BUSOWN_17_01_22      = BUSOWN_17_01;       
    BUSOWN_17_02_22      = BUSOWN_17_02; 
    BUSOWN_17_03_22      = BUSOWN_17_03;       
    BUSOWN_17_04_22      = BUSOWN_17_04; 
    BUSOWN_17_05_22      = BUSOWN_17_05;       
    BUSOWN_17_06_22      = BUSOWN_17_06; 
    BUSOWN_17_07_22      = BUSOWN_17_07;       
    BUSOWN_17_08_22      = BUSOWN_17_08; 
    BUSOWN_17_09_22      = BUSOWN_17_09;       
    BUSOWN_17_10_22      = BUSOWN_17_10;
 
    BUSOWN_18_01_Y_22    = BUSOWN_18_01_Y;     
    BUSOWN_18_02_Y_22    = BUSOWN_18_02_Y;     
    BUSOWN_18_03_Y_22    = BUSOWN_18_03_Y;     
    BUSOWN_18_04_Y_22    = BUSOWN_18_04_Y;     
    BUSOWN_18_05_Y_22    = BUSOWN_18_05_Y;     
    BUSOWN_18_06_Y_22    = BUSOWN_18_06_Y;     
    BUSOWN_18_07_Y_22    = BUSOWN_18_07_Y;     
    BUSOWN_18_08_Y_22    = BUSOWN_18_08_Y;     
    BUSOWN_18_09_Y_22    = BUSOWN_18_09_Y;     
    BUSOWN_18_10_Y_22    = BUSOWN_18_10_Y;
     
    BUSOWN_19_01_22      = BUSOWN_19_01;       
    BUSOWN_19_02_22      = BUSOWN_19_02;       
    BUSOWN_19_03_22      = BUSOWN_19_03;       
    BUSOWN_19_04_22      = BUSOWN_19_04;       
    BUSOWN_19_05_22      = BUSOWN_19_05;       
    BUSOWN_19_06_22      = BUSOWN_19_06;       
    BUSOWN_19_07_22      = BUSOWN_19_07;       
    BUSOWN_19_08_22      = BUSOWN_19_08;       
    BUSOWN_19_09_22      = BUSOWN_19_09;       
    BUSOWN_19_10_22      = BUSOWN_19_10;
       
    BUSOWN_20_01_22      = BUSOWN_20_01; 
    BUSOWN_20_02_22      = BUSOWN_20_02; 
    BUSOWN_20_03_22      = BUSOWN_20_03; 
    BUSOWN_20_04_22      = BUSOWN_20_04; 
    BUSOWN_20_05_22      = BUSOWN_20_05; 
    BUSOWN_20_06_22      = BUSOWN_20_06; 
    BUSOWN_20_07_22      = BUSOWN_20_07; 
    BUSOWN_20_08_22      = BUSOWN_20_08; 
    BUSOWN_20_09_22      = BUSOWN_20_09; 
    BUSOWN_20_10_22      = BUSOWN_20_10;
 
    BUSOWN_21_01_22      = BUSOWN_21_01; 
    BUSOWN_21_02_22      = BUSOWN_21_02; 
 
    BUSOWN_22_01_22      = BUSOWN_22_01;       
    BUSOWN_22_02_22      = BUSOWN_22_02;       
    BUSOWN_23A_22        = BUSOWN_23A;         
    BUSOWN_23B_22        = BUSOWN_23B;         
    BUSOWN_24A_22        = BUSOWN_24A;         
    BUSOWN_24B_22        = BUSOWN_24B;  
    BUSOWN_25_22         = BUSOWN_25;          
    BUSOWN_29_22         = BUSOWN_29;          
if busown_1_22>-4 then do;
	busown_1_xr=busown_1_22;
	busown_sourceyr=2022;
end;
if busown_2_22>-4 then busown_2_xr=busown_2_22;
array	bus5_22	    (i)  busown_5_01_y_22 busown_5_02_y_22 busown_5_03_y_22 busown_5_04_y_22 busown_5_05_y_22   
	    				 busown_5_06_y_22 busown_5_07_y_22 busown_5_08_y_22 busown_5_09_y_22 busown_5_10_y_22;
array	bus5_xr	    (i)  busown_5_01_y_xr busown_5_02_y_xr busown_5_03_y_xr busown_5_04_y_xr busown_5_05_y_xr   
	    				 busown_5_06_y_xr busown_5_07_y_xr busown_5_08_y_xr busown_5_09_y_xr busown_5_10_y_xr;
array	bus6m_22	(i)  busown_6_01_m_22 busown_6_02_m_22 busown_6_03_m_22 busown_6_04_m_22 busown_6_05_m_22   
	    				 busown_6_06_m_22 busown_6_07_m_22 busown_6_08_m_22 busown_6_09_m_22 busown_6_10_m_22;
array	bus6m_xr	(i)  busown_6_01_m_xr busown_6_02_m_xr busown_6_03_m_xr busown_6_04_m_xr busown_6_05_m_xr   
	    				 busown_6_06_m_xr busown_6_07_m_xr busown_6_08_m_xr busown_6_09_m_xr busown_6_10_m_xr;
array	bus6y_22	(i)  busown_6_01_y_22 busown_6_02_y_22 busown_6_03_y_22 busown_6_04_y_22 busown_6_05_y_22   
	    				 busown_6_06_y_22 busown_6_07_y_22 busown_6_08_y_22 busown_6_09_y_22 busown_6_10_y_22;
array	bus6y_xr	(i)  busown_6_01_y_xr busown_6_02_y_xr busown_6_03_y_xr busown_6_04_y_xr busown_6_05_y_xr   
	    				 busown_6_06_y_xr busown_6_07_y_xr busown_6_08_y_xr busown_6_09_y_xr busown_6_10_y_xr;
array	bus7_22	    (i)  busown_7_01_22 busown_7_02_22 busown_7_03_22 busown_7_04_22 busown_7_05_22   
	    				 busown_7_06_22 busown_7_07_22 busown_7_08_22 busown_7_09_22 busown_7_10_22;
array	bus7_xr	    (i)  busown_7_01_xr busown_7_02_xr busown_7_03_xr busown_7_04_xr busown_7_05_xr   
	    				 busown_7_06_xr busown_7_07_xr busown_7_08_xr busown_7_09_xr busown_7_10_xr;
array	bus9_22		(i)  busown_9_01_22 busown_9_02_22 busown_9_03_22 busown_9_04_22 busown_9_05_22   
	    				 busown_9_06_22 busown_9_07_22 busown_9_08_22 busown_9_09_22 busown_9_10_22;
array	bus9_xr		(i)  busown_9_01_xr busown_9_02_xr busown_9_03_xr busown_9_04_xr busown_9_05_xr   
	    				 busown_9_06_xr busown_9_07_xr busown_9_08_xr busown_9_09_xr busown_9_10_xr;
array	bus100_22	(i)  busown_10_01_0_22 busown_10_02_0_22 busown_10_03_0_22 busown_10_04_0_22 busown_10_05_0_22   
	    				 busown_10_06_0_22 busown_10_07_0_22 busown_10_08_0_22 busown_10_09_0_22 busown_10_10_0_22;
array	bus100_xr	(i)  busown_10_01_0_xr busown_10_02_0_xr busown_10_03_0_xr busown_10_04_0_xr busown_10_05_0_xr   
	    				 busown_10_06_0_xr busown_10_07_0_xr busown_10_08_0_xr busown_10_09_0_xr busown_10_10_0_xr;
array	bus101_22	(i)  busown_10_01_1_22 busown_10_02_1_22 busown_10_03_1_22 busown_10_04_1_22 busown_10_05_1_22   
	    				 busown_10_06_1_22 busown_10_07_1_22 busown_10_08_1_22 busown_10_09_1_22 busown_10_10_1_22;
array	bus101_xr	(i)  busown_10_01_1_xr busown_10_02_1_xr busown_10_03_1_xr busown_10_04_1_xr busown_10_05_1_xr   
	    				 busown_10_06_1_xr busown_10_07_1_xr busown_10_08_1_xr busown_10_09_1_xr busown_10_10_1_xr;
array	bus102_22	(i)  busown_10_01_2_22 busown_10_02_2_22 busown_10_03_2_22 busown_10_04_2_22 busown_10_05_2_22   
	    				 busown_10_06_2_22 busown_10_07_2_22 busown_10_08_2_22 busown_10_09_2_22 busown_10_10_2_22;
array	bus102_xr	(i)  busown_10_01_2_xr busown_10_02_2_xr busown_10_03_2_xr busown_10_04_2_xr busown_10_05_2_xr   
	    				 busown_10_06_2_xr busown_10_07_2_xr busown_10_08_2_xr busown_10_09_2_xr busown_10_10_2_xr;
array	bus103_22	(i)  busown_10_01_3_22 busown_10_02_3_22 busown_10_03_3_22 busown_10_04_3_22 busown_10_05_3_22   
	    				 busown_10_06_3_22 busown_10_07_3_22 busown_10_08_3_22 busown_10_09_3_22 busown_10_10_3_22;
array	bus103_xr	(i)  busown_10_01_3_xr busown_10_02_3_xr busown_10_03_3_xr busown_10_04_3_xr busown_10_05_3_xr   
	    				 busown_10_06_3_xr busown_10_07_3_xr busown_10_08_3_xr busown_10_09_3_xr busown_10_10_3_xr;
array	bus104_22	(i)  busown_10_01_4_22 busown_10_02_4_22 busown_10_03_4_22 busown_10_04_4_22 busown_10_05_4_22   
	    				 busown_10_06_4_22 busown_10_07_4_22 busown_10_08_4_22 busown_10_09_4_22 busown_10_10_4_22;
array	bus104_xr	(i)  busown_10_01_4_xr busown_10_02_4_xr busown_10_03_4_xr busown_10_04_4_xr busown_10_05_4_xr   
	    				 busown_10_06_4_xr busown_10_07_4_xr busown_10_08_4_xr busown_10_09_4_xr busown_10_10_4_xr;
array	bus105_22	(i)  busown_10_01_5_22 busown_10_02_5_22 busown_10_03_5_22 busown_10_04_5_22 busown_10_05_5_22   
	    				 busown_10_06_5_22 busown_10_07_5_22 busown_10_08_5_22 busown_10_09_5_22 busown_10_10_5_22;
array	bus105_xr	(i)  busown_10_01_5_xr busown_10_02_5_xr busown_10_03_5_xr busown_10_04_5_xr busown_10_05_5_xr   
	    				 busown_10_06_5_xr busown_10_07_5_xr busown_10_08_5_xr busown_10_09_5_xr busown_10_10_5_xr;
array	bus106_22	(i)  busown_10_01_6_22 busown_10_02_6_22 busown_10_03_6_22 busown_10_04_6_22 busown_10_05_6_22   
	    				 busown_10_06_6_22 busown_10_07_6_22 busown_10_08_6_22 busown_10_09_6_22 busown_10_10_6_22;
array	bus106_xr	(i)  busown_10_01_6_xr busown_10_02_6_xr busown_10_03_6_xr busown_10_04_6_xr busown_10_05_6_xr   
	    				 busown_10_06_6_xr busown_10_07_6_xr busown_10_08_6_xr busown_10_09_6_xr busown_10_10_6_xr;
array	bus107_22	(i)  busown_10_01_7_22 busown_10_02_7_22 busown_10_03_7_22 busown_10_04_7_22 busown_10_05_7_22   
	    				 busown_10_06_7_22 busown_10_07_7_22 busown_10_08_7_22 busown_10_09_7_22 busown_10_10_7_22;
array	bus107_xr	(i)  busown_10_01_7_xr busown_10_02_7_xr busown_10_03_7_xr busown_10_04_7_xr busown_10_05_7_xr   
	    				 busown_10_06_7_xr busown_10_07_7_xr busown_10_08_7_xr busown_10_09_7_xr busown_10_10_7_xr;
array	bus11_22	(i)  busown_11_01_22 busown_11_02_22 busown_11_03_22 busown_11_04_22 busown_11_05_22   
	    				 busown_11_06_22 busown_11_07_22 busown_11_08_22 busown_11_09_22 busown_11_10_22;
array	bus11_xr	(i)  busown_11_01_xr busown_11_02_xr busown_11_03_xr busown_11_04_xr busown_11_05_xr   
	    				 busown_11_06_xr busown_11_07_xr busown_11_08_xr busown_11_09_xr busown_11_10_xr;
array	bus11u1_22	(i)  busown_11_unf1_01_22 busown_11_unf1_02_22 busown_11_unf1_03_22 busown_11_unf1_04_22 busown_11_unf1_05_22   
	    				 busown_11_unf1_06_22 busown_11_unf1_07_22 busown_11_unf1_08_22 busown_11_unf1_09_22 busown_11_unf1_10_22;
array	bus11u1_xr	(i)  busown_11_unf1_01_xr busown_11_unf1_02_xr busown_11_unf1_03_xr busown_11_unf1_04_xr busown_11_unf1_05_xr   
	    				 busown_11_unf1_06_xr busown_11_unf1_07_xr busown_11_unf1_08_xr busown_11_unf1_09_xr busown_11_unf1_10_xr;
array	bus12_22	(i)  busown_12_01_22 busown_12_02_22 busown_12_03_22 busown_12_04_22 busown_12_05_22   
	    				 busown_12_06_22 busown_12_07_22 busown_12_08_22 busown_12_09_22 busown_12_10_22;
array	bus12_xr	(i)  busown_12_01_xr busown_12_02_xr busown_12_03_xr busown_12_04_xr busown_12_05_xr   
	    				 busown_12_06_xr busown_12_07_xr busown_12_08_xr busown_12_09_xr busown_12_10_xr;
array	bus14_22	(i)  busown_14_01_22 busown_14_02_22 busown_14_03_22 busown_14_04_22 busown_14_05_22   
	    				 busown_14_06_22 busown_14_07_22 busown_14_08_22 busown_14_09_22 busown_14_10_22;
array	bus14_xr	(i)  busown_14_01_xr busown_14_02_xr busown_14_03_xr busown_14_04_xr busown_14_05_xr   
	    				 busown_14_06_xr busown_14_07_xr busown_14_08_xr busown_14_09_xr busown_14_10_xr;
array	bus15_22	(i)  busown_15_01_22 busown_15_02_22 busown_15_03_22 busown_15_04_22 busown_15_05_22   
	    				 busown_15_06_22 busown_15_07_22 busown_15_08_22 busown_15_09_22 busown_15_10_22;
array	bus15_xr	(i)  busown_15_01_xr busown_15_02_xr busown_15_03_xr busown_15_04_xr busown_15_05_xr   
	    				 busown_15_06_xr busown_15_07_xr busown_15_08_xr busown_15_09_xr busown_15_10_xr;
array	bus16_22	(i)  busown_16_01_22 busown_16_02_22 busown_16_03_22 busown_16_04_22 busown_16_05_22   
	    				 busown_16_06_22 busown_16_07_22 busown_16_08_22 busown_16_09_22 busown_16_10_22;
array	bus16_xr	(i)  busown_16_01_xr busown_16_02_xr busown_16_03_xr busown_16_04_xr busown_16_05_xr   
	    				 busown_16_06_xr busown_16_07_xr busown_16_08_xr busown_16_09_xr busown_16_10_xr;
array	bus17_22	(i)  busown_17_01_22 busown_17_02_22 busown_17_03_22 busown_17_04_22 busown_17_05_22   
	    				 busown_17_06_22 busown_17_07_22 busown_17_08_22 busown_17_09_22 busown_17_10_22;
array	bus17_xr	(i)  busown_17_01_xr busown_17_02_xr busown_17_03_xr busown_17_04_xr busown_17_05_xr   
	    				 busown_17_06_xr busown_17_07_xr busown_17_08_xr busown_17_09_xr busown_17_10_xr;
array	bus18_22	(i)  busown_18_01_y_22 busown_18_02_y_22 busown_18_03_y_22 busown_18_04_y_22 busown_18_05_y_22   
	    				 busown_18_06_y_22 busown_18_07_y_22 busown_18_08_y_22 busown_18_09_y_22 busown_18_10_y_22;
array	bus18_xr	(i)  busown_18_01_y_xr busown_18_02_y_xr busown_18_03_y_xr busown_18_04_y_xr busown_18_05_y_xr   
	    				 busown_18_06_y_xr busown_18_07_y_xr busown_18_08_y_xr busown_18_09_y_xr busown_18_10_y_xr;
array	bus19_22	(i)  busown_19_01_22 busown_19_02_22 busown_19_03_22 busown_19_04_22 busown_19_05_22   
	    				 busown_19_06_22 busown_19_07_22 busown_19_08_22 busown_19_09_22 busown_19_10_22;
array	bus19_xr	(i)  busown_19_01_xr busown_19_02_xr busown_19_03_xr busown_19_04_xr busown_19_05_xr   
	    				 busown_19_06_xr busown_19_07_xr busown_19_08_xr busown_19_09_xr busown_19_10_xr;
array	bus20_22	(i)  busown_20_01_22 busown_20_02_22 busown_20_03_22 busown_20_04_22 busown_20_05_22   
	    				 busown_20_06_22 busown_20_07_22 busown_20_08_22 busown_20_09_22 busown_20_10_22;
array	bus20_xr	(i)  busown_20_01_xr busown_20_02_xr busown_20_03_xr busown_20_04_xr busown_20_05_xr   
	    				 busown_20_06_xr busown_20_07_xr busown_20_08_xr busown_20_09_xr busown_20_10_xr;
array	bus21_22	(i)  busown_21_01_22 busown_21_02_22 busown_21_03_22 busown_21_04_22 busown_21_05_22   
	    				 busown_21_06_22 busown_21_07_22 busown_21_08_22 busown_21_09_22 busown_21_10_22;
array	bus21_xr	(i)  busown_21_01_xr busown_21_02_xr busown_21_03_xr busown_21_04_xr busown_21_05_xr   
	    				 busown_21_06_xr busown_21_07_xr busown_21_08_xr busown_21_09_xr busown_21_10_xr;
array	bus22_22	(i)  busown_22_01_22 busown_22_02_22 busown_22_03_22 busown_22_04_22 busown_22_05_22   
	    				 busown_22_06_22 busown_22_07_22 busown_22_08_22 busown_22_09_22 busown_22_10_22;
array	bus22_xr	(i)  busown_22_01_xr busown_22_02_xr busown_22_03_xr busown_22_04_xr busown_22_05_xr   
	    				 busown_22_06_xr busown_22_07_xr busown_22_08_xr busown_22_09_xr busown_22_10_xr;
do i=1 to 10;
	if bus5_22>-4 then bus5_xr=bus5_22;
	if bus6m_22>-4 then bus6m_xr=bus6m_22;
	if bus6y_22>-4 then bus6y_xr=bus6y_22;
	if bus7_22>-4 then bus7_xr=bus7_22;
	if bus9_22>-4 then bus9_xr=bus9_22;
	if bus101_22>-4 then bus101_xr=bus101_22;
	if bus102_22>-4 then bus102_xr=bus102_22;
	if bus103_22>-4 then bus103_xr=bus103_22;
	if bus104_22>-4 then bus104_xr=bus104_22;
	if bus105_22>-4 then bus105_xr=bus105_22;
	if bus106_22>-4 then bus106_xr=bus106_22;
	if bus107_22>-4 then bus107_xr=bus107_22;
	if bus100_22>-4 then bus100_xr=bus107_22;
	if bus11_22>-4 then bus11_xr=bus11_22;
	if bus11u1_22>-4 then bus11u1_xr=bus11u1_22;
	if bus12_22>-4 then bus12_xr=bus12_22;
	if bus14_22>-4 then bus14_xr=bus14_22;
	if bus15_22>-4 then bus15_xr=bus15_22;
	if bus16_22>-4 then bus16_xr=bus16_22;
	if bus17_22>-4 then bus17_xr=bus17_22;
	if bus18_22>-4 then bus18_xr=bus18_22;
	if bus19_22>-4 then bus19_xr=bus19_22;
	if bus20_22>-4 then bus20_xr=bus20_22;
	if bus21_22>-4 then bus21_xr=bus21_22;
	if bus22_22>-4 then bus22_xr=bus22_22;
end;
if busown_23a_22>-4 then busown_23a_xr=busown_23a_22;
if busown_23b_22>-4 then busown_23b_xr=busown_23b_22;
if busown_24a_22>-4 then busown_24a_xr=busown_24a_22;
if busown_24b_22>-4 then busown_24b_xr=busown_24b_22;
if busown_25_22>-4  then busown_25_xr=busown_25_22;
if busown_29_22>-4  then busown_29_xr=busown_29_22;
array pastuid22	(2) 		pastjobuid22_1_1 pastjobuid22_2_1;
array qual22    (2) 		quality22_1-quality22_2;
array pastuid	(2) 		pastjobuid_1_1 pastjobuid_2_1;
array qual      (2) 		quality_1-quality_2;
array yr        (2) 		matchyear_1-matchyear_2;
do i=1 to 2;
	if qual22(i)~=. then do;
		qual(i)=qual22(i);
		pastuid(i)=pastuid22(i);
		yr(i)=2022;
	end;
end;
keep norcid busown_sourceyr 
   busown_1_xr busown_2_xr
   busown_5_01_y_xr busown_5_02_y_xr busown_5_03_y_xr busown_5_04_y_xr busown_5_05_y_xr   
   busown_5_06_y_xr busown_5_07_y_xr busown_5_08_y_xr busown_5_09_y_xr busown_5_10_y_xr              
   busown_6_01_m_xr busown_6_02_m_xr busown_6_03_m_xr busown_6_04_m_xr busown_6_05_m_xr   
   busown_6_06_m_xr busown_6_07_m_xr busown_6_08_m_xr busown_6_09_m_xr busown_6_10_m_xr              
   busown_6_01_y_xr busown_6_02_y_xr busown_6_03_y_xr busown_6_04_y_xr busown_6_05_y_xr   
   busown_6_06_y_xr busown_6_07_y_xr busown_6_08_y_xr busown_6_09_y_xr busown_6_10_y_xr              
   busown_7_01_xr busown_7_02_xr busown_7_03_xr busown_7_04_xr busown_7_05_xr   
   busown_7_06_xr busown_7_07_xr busown_7_08_xr busown_7_09_xr busown_7_10_xr                    
   busown_9_01_xr busown_9_02_xr busown_9_03_xr busown_9_04_xr busown_9_05_xr   
   busown_9_06_xr busown_9_07_xr busown_9_08_xr busown_9_09_xr busown_9_10_xr                    
   busown_10_01_0_xr busown_10_02_0_xr busown_10_03_0_xr busown_10_04_0_xr busown_10_05_0_xr   
   busown_10_06_0_xr busown_10_07_0_xr busown_10_08_0_xr busown_10_09_0_xr busown_10_10_0_xr           
   busown_10_01_1_xr busown_10_02_1_xr busown_10_03_1_xr busown_10_04_1_xr busown_10_05_1_xr   
   busown_10_06_1_xr busown_10_07_1_xr busown_10_08_1_xr busown_10_09_1_xr busown_10_10_1_xr          
   busown_10_01_2_xr busown_10_02_2_xr busown_10_03_2_xr busown_10_04_2_xr busown_10_05_2_xr   
   busown_10_06_2_xr busown_10_07_2_xr busown_10_08_2_xr busown_10_09_2_xr busown_10_10_2_xr        
   busown_10_01_3_xr busown_10_02_3_xr busown_10_03_3_xr busown_10_04_3_xr busown_10_05_3_xr   
   busown_10_06_3_xr busown_10_07_3_xr busown_10_08_3_xr busown_10_09_3_xr busown_10_10_3_xr           
   busown_10_01_4_xr busown_10_02_4_xr busown_10_03_4_xr busown_10_04_4_xr busown_10_05_4_xr   
   busown_10_06_4_xr busown_10_07_4_xr busown_10_08_4_xr busown_10_09_4_xr busown_10_10_4_xr           
   busown_10_01_5_xr busown_10_02_5_xr busown_10_03_5_xr busown_10_04_5_xr busown_10_05_5_xr   
   busown_10_06_5_xr busown_10_07_5_xr busown_10_08_5_xr busown_10_09_5_xr busown_10_10_5_xr           
   busown_10_01_6_xr busown_10_02_6_xr busown_10_03_6_xr busown_10_04_6_xr busown_10_05_6_xr   
   busown_10_06_6_xr busown_10_07_6_xr busown_10_08_6_xr busown_10_09_6_xr busown_10_10_6_xr           
   busown_10_01_7_xr busown_10_02_7_xr busown_10_03_7_xr busown_10_04_7_xr busown_10_05_7_xr   
   busown_10_06_7_xr busown_10_07_7_xr busown_10_08_7_xr busown_10_09_7_xr busown_10_10_7_xr           
   busown_11_01_xr busown_11_02_xr busown_11_03_xr busown_11_04_xr busown_11_05_xr   
   busown_11_06_xr busown_11_07_xr busown_11_08_xr busown_11_09_xr busown_11_10_xr   
   busown_11_unf1_01_xr busown_11_unf1_02_xr busown_11_unf1_03_xr busown_11_unf1_04_xr busown_11_unf1_05_xr   
   busown_11_unf1_06_xr busown_11_unf1_07_xr busown_11_unf1_08_xr busown_11_unf1_09_xr busown_11_unf1_10_xr  
   busown_12_01_xr busown_12_02_xr busown_12_03_xr busown_12_04_xr busown_12_05_xr   
   busown_12_06_xr busown_12_07_xr busown_12_08_xr busown_12_09_xr busown_12_10_xr              
   busown_14_01_xr busown_14_02_xr busown_14_03_xr busown_14_04_xr busown_14_05_xr   
   busown_14_06_xr busown_14_07_xr busown_14_08_xr busown_14_09_xr busown_14_10_xr                 
   busown_15_01_xr busown_15_02_xr busown_15_03_xr busown_15_04_xr busown_15_05_xr   
   busown_15_06_xr busown_15_07_xr busown_15_08_xr busown_15_09_xr busown_15_10_xr              
   busown_16_01_xr busown_16_02_xr busown_16_03_xr busown_16_04_xr busown_16_05_xr   
   busown_16_06_xr busown_16_07_xr busown_16_08_xr busown_16_09_xr busown_16_10_xr                
   busown_17_01_xr busown_17_02_xr busown_17_03_xr busown_17_04_xr busown_17_05_xr   
   busown_17_06_xr busown_17_07_xr busown_17_08_xr busown_17_09_xr busown_17_10_xr                 
   busown_18_01_y_xr busown_18_02_y_xr busown_18_03_y_xr busown_18_04_y_xr busown_18_05_y_xr   
   busown_18_06_y_xr busown_18_07_y_xr busown_18_08_y_xr busown_18_09_y_xr busown_18_10_y_xr          
   busown_19_01_xr busown_19_02_xr busown_19_03_xr busown_19_04_xr busown_19_05_xr   
   busown_19_06_xr busown_19_07_xr busown_19_08_xr busown_19_09_xr busown_19_10_xr                  
   busown_20_01_xr busown_20_02_xr busown_20_03_xr busown_20_04_xr busown_20_05_xr   
   busown_20_06_xr busown_20_07_xr busown_20_08_xr busown_20_09_xr busown_20_10_xr                  
   busown_21_01_xr busown_21_02_xr                
   busown_22_01_xr busown_22_02_xr  
   busown_23a_xr busown_23b_xr
   busown_24a_xr busown_24b_xr
   busown_25_xr 
   busown_29_xr
   pastjobuid_1_1 pastjobuid_2_1
   quality_1-quality_2;
run;

NLSY79 Appendix 29: Date of Interview Current Status Variables

The NLSY79 public release data contains a set of variables for survey years 1980-2022 with information on the respondent's labor force status at each date of interview. These variables are:

Question Name Variable Title
DOI_EMPLOYED DATE OF INTERVIEW STATUS – EMPLOYED
DOI_HOURS_WORKED DATE OF INTERVIEW STATUS – HOURS WORKED
DOI_RETIRED DATE OF INTERVIEW STATUS – RETIRED
DOI_DISABLED DATE OF INTERVIEW STATUS – DISABLED

Below is a description of these variables and the process by which they were constructed.

Variable description

In survey years 1979-1998 and 2006, the NLSY79 included a heavily used variable called Employment Status Recode (ESR) for each year. These variables represented the respondent's employment status during the survey week and were based on a very specific set of questions that mirrored the actual monthly Current Population Survey. Because ESR can only be computed from those specific questions, it cannot be computed in a strictly equivalent way in survey years in which the CPS section was not fielded as part of the NLSY79.

Many inquiries have been received concerning the missing ESR variables in non-CPS survey years. The Date of Interview Current Status (DOI) variables are intended to help provide a similar concise picture of a respondent's current status on the date of interview. The DOI variables provide a snapshot, capturing whether on the interview date the respondent:

  • was employed (DOI_EMPLOYED)
  • worked more or less than 30 hours per week (DOI_HOURS_WORKED)
  • considered herself/himself retired or reported current retirement status during the course of the survey, regardless of employment status (DOI_RETIRED)
  • considered herself/himself disabled, or reported current disability status in the course of the survey, regardless of employment status (DOI_DISABLED)

Users should note that the working/retired/disabled statuses are not necessarily mutually exclusive within single survey years, or continuous through multiple survey years. For example, a respondent may report that s/he is retired and disabled, but also working in some capacity at a single interview point. Likewise, a respondent who reports herself/himself disabled at one point in time may not be disabled (or provides no evidence of disability) at a later interview date. Similarly, someone who reports retirement at an earlier survey date may be working and not be identified as retired at a later survey date. For instance, respondents who have reported retirement from the military or a civil service/law enforcement position at a relatively early age may go on to a second full-time career and be identified only as employed in later years. An examination of current status variables in multiple years is necessary to determine if a respondent ever identified as retired/disabled, even if their status variables in the most current survey years do not reflect these reports.

Users should note that because the Date of Interview Current Status variables are based on weekly arrays, users may encounter a subset of cases that are assigned an "employed" status in these variables but report that they are "not currently working" in the actual survey.

Variable creation

DOI_EMPLOYED – DATE OF INTERVIEW STATUS – EMPLOYED

These variables are based on codes in the Work History WEEKLY LABOR STATUS array. If a job number or a code for active military enlistment is present in the array for the week of interview, the respondent is assigned a current status of "1 - working." If the array for that week contains a code for unemployed or out of the labor force, the respondent is assigned a current status of "0 - not working."

DOI_HOURS_WORKED – DATE OF INTERVIEW STATUS – HOURS WORKED

The hours worked are determined from the Work History HOURS WORKED array. Those with 0 hours worked are assigned a -4 code. Respondents who worked between 1-29 hours during the interview week are assigned a code of "0 – less than 30 hours." Respondents who worked 30 or more hours that week are assigned a code of "1 – 30 hours or more."

DOI_RETIRED – DATE OF INTERVIEW STATUS - RETIRED

Current retirement status at the date of each interview was established by using available questions that allow respondents to specifically report retirement in a response category. There are only one or two such question opportunities in the NLSY79 in any given year, and they are not necessarily asked of the entire sample. For later survey years (1994-2022) comments entered during the interview were available for staff. Comments were examined to identify respondents who reported current retired status outside the structure of the proscribed interview questions. Questions used to determine retired status, with examples from 1990, 1998, 2012 and 2018, are:

  • 1990 (QES-23A.##)
  • 1998 (QES-23A.##, ESR_KEY)
  • 2012 (QES-23A.##, RETIRE_EXP_P2_1A)
  • 2018 (QES-23A.##, Q7-19.##, Q7-38)

DOI_DISABLED – DATE OF INTERVIEW STATUS - DISABLED

Similar to retirement status, current disability status at the date of each interview was established by using available questions that allow respondents to specifically report disability/inability to work in a response category. NLSY79 questionnaires offer various opportunities in any given year to report disability, although all are not necessarily asked of the entire sample. Questions used to determine disabled status, with examples from 1990, 2012 and 2018, are:

  • 1990 (QES-23A.##, ESR_KEY, QES-43.##.##, Q7-19.##, Q11-3)
  • 2012 (RETIRE_EXP_P2_1A, QES-23A.##, QES-43.##.##, Q7-19.##, Q11-3)
  • 2018 (QES-23A.##, QES-43.##.##, QES-33.##.##,  Q7-19.##, Q7-38, Q11-3)

As mentioned for the retirement variables above, comments entered during the interview were available to staff for survey years 1994-2022. Comments for these later years were examined to identify respondents who reported current disability status outside the structure of the proscribed interview questions as listed above.

Click below to view programming code.

Compute 2022 (Round 30) DOI_EMPLOYED

/************************ Variables Used ************************/
/**Variable Names in program    Variable Names in data release**/
CURWK22			                CURRINT_WK#_2022
STATUS_WK#### (2334-2384)	    STATUS_WK_NUM#### (2334-2384)
/*--------------------------------------------------------------*/
array status   (i)  	_1-_2333 status_wk2334-status_wk2384;
do i=2334 to 2384; 
	if i=CURWK22 then do;
		empstat_wbi=status;
	end;
end;
if empstat_wbi>0 & empstat_wbi<=5 then doi_employed=0;
else if empstat_wbi=7 then doi_employed=1;
else if empstat_wbi>=3000 then doi_employed=1;
else if empstat_wbi=0 then doi_employed=-3;
if CURWK22=-4 then doi_employed=-5;

Compute 2022 (Round 30) DOI_HOURS_WORKED

/************************ Variables Used ************************/
/**Variable Names in program    Variable Names in data release**/
CURWK20                         CURRINT_WK#_2020
HRS_WK#### (2230-2296)          HRS_WORKED_WK_NUM#### (2230-2296)
/*--------------------------------------------------------------*/ 
array hrs   (i)  _1-_2229 hrs_wk2230-hrs_wk2295;
 
do i=2230 to 2295; 
   if i=CURWK20 then do;
hrs_doi=hrs;
   end;
end;
 
if doi_employed=0 then doi_hours_worked=-4;
else if doi_employed=1 then do;
   if hrs_doi<0 & hrs_doi>-4 then doi_hours_worked=-3;
   else if hrs_doi>=0 & hrs_doi<30 then doi_hours_worked=0;
   else if hrs_doi>=30 then doi_hours_worked=1;
end;
else if doi_employed=-3 then doi_hours_worked=-3;
else if doi_employed=-5 then doi_hours_worked=-5;

Compute 2022 (Round 30) DOI_RETIRED & DOI_DISABLED

/***************************** Variables Used *****************************/
/**Variable Names in program              Variable Names in data release**/
CURDATE_D                                 CURDATE~D
CURDATE_M                                 CURDATE~M
CURDATE_Y                                 CURDATE~Y
QES_B                                     QES-B
QES_23A_## (1-5)                          QES-23A.## (1-5)
QES_23A_2_## (1-5)                        QES-23A_2.## (1-5)
QES_31_##_##_D (job 1-5, gap 1-3)         QES-31.##.##~D (job 1-5, gap 1-3)
QES_31_##_##_M (job 1-5, gap 1-3)         QES-31.##.##~M (job 1-5, gap 1-3)
QES_31_##_##_Y (job 1-5, gap 1-3)         QES-31.##.##~Y (job 1-5, gap 1-3)
QES_33_##_## (job 1-5, gap 1-3)           QES-33.##.## (job 1-5, gap 1-3)
QES_43_##_## (job 1-3, gap 1-3)           QES-43.##.## (job 1-3, gap 1-3)
Q7_11_##_D (1-4)                          Q7-11.##~D (1-4)
Q7_11_##_M (1-4)                          Q7-11.##~M (1-4)
Q7_11_##_Y (1-4)                          Q7-11.##~Y (1-4)
Q7_19_## (1-4)                            Q7-19.## (1-4)
Q7_38                                     Q7-38
Q11_3                                     Q11-3
Q11_4                                     Q11-4
Q11_5                                     Q11-5
Q11_5A                                    Q11-5A
Q11_7                                     Q11-7
Q11_8_M                                   Q11-8~M
Q11_8Y_                                   Q11-8~Y
Q15_9A_1                                  Q15-9A~000001
Q15_9A_2                                  Q15-9A~000002
Q15_9A_3                                  Q15-9A~000003
Q15_9A_4                                  Q15-9A~000004
Q15_9A_5                                  Q15-9A~000005
Q15_9A_6                                  Q15-9A~000006
Q15_9A_7                                  Q15-9A~000007
RNI                                       RNI
/*--------------------------------------------------------------*/
WORK DOI_EMPLOYED
HOURS30 DOI_HOURS_WORKED
EMP_STOP_##_D (1-13) EMPLOYER_STOPDATE.##~D (1-13)
EMP_STOP_##_M (1-13) EMPLOYER_STOPDATE.##~M (1-13)
EMP_STOP_##_Y (1-13) EMPLOYER_STOPDATE.##~Y (1-13)
 
data three;
 set one;
 
 *why leaving a job;
array stopd (*) EMP_STOP_01_D EMP_STOP_02_D EMP_STOP_03_D EMP_STOP_04_D EMP_STOP_05_D;
array stopm (*) EMP_STOP_01_M EMP_STOP_02_M EMP_STOP_03_M EMP_STOP_04_M EMP_STOP_05_M;
array stopy (*) EMP_STOP_01_Y EMP_STOP_02_Y EMP_STOP_03_Y EMP_STOP_04_Y EMP_STOP_05_Y;
array qes23a (*)  qes_23a_01 qes_23a_02 qes_23a_03 qes_23a_04 qes_23a_05;
 *within job gap;
array qes31d (*)  QES_31_01_01_D QES_31_01_02_D QES_31_01_03_D
QES_31_02_01_D QES_31_02_02_D QES_31_02_03_D
QES_31_03_01_D QES_31_03_02_D QES_31_03_03_D
QES_31_04_01_D QES_31_04_02_D QES_31_04_03_D
QES_31_05_01_D ES_31_05_02_D dum;
array qes31m (*) QES_31_01_01_M QES_31_01_02_M QES_31_01_03_M
QES_31_02_01_M QES_31_02_02_M QES_31_02_03_M
QES_31_03_01_M QES_31_03_02_M QES_31_03_03_M
QES_31_04_01_M QES_31_04_02_M QES_31_04_03_M
QES_31_05_01_M QES_31_05_02_M dum;
array qes31y (*) QES_31_01_01_Y QES_31_01_02_Y QES_31_01_03_Y
QES_31_02_01_Y QES_31_02_02_Y QES_31_02_03_Y
QES_31_03_01_Y QES_31_03_02_Y QES_31_03_03_Y
QES_31_04_01_Y QES_31_04_02_Y QES_31_04_03_Y
QES_31_05_01_Y QES_31_05_02_Y dum;
array qes33 (*)  QES_33_01_01 QES_33_01_02 QES_33_01_03
QES_33_02_01 QES_33_02_02 QES_33_02_03
QES_33_03_01 QES_33_03_02 QES_33_03_03
QES_33_04_01 QES_33_04_02 QES_33_04_03
QES_33_05_01 QES_33_05_02 dum;
array qes43     (*)  qes_43_01_01 qes_43_01_02 qes_43_01_03
                     qes_43_02_01 qes_43_02_02 qes_43_03_03
                     qes_43_03_01 qes_43_03_02 qes_43_03_03
                     dum dum dum
dum dum dum;
*between job gaps;
array q711d (*) Q7_11_01_D Q7_11_02_D Q7_11_03_D Q7_11_04_D;
array q711m (*) Q7_11_01_M Q7_11_02_M Q7_11_03_M Q7_11_04_M;
array q711y (*) Q7_11_01_Y Q7_11_02_Y Q7_11_03_Y Q7_11_04_Y;
array q719  (*)  q7_19_01 q7_19_02 q7_19_03 q7_19_04;
 
***** retire or not at interview date;
if qes_23a_01=-5 then qes23aR=-5;
else do;
 qes23aR = 0;
 q719R=0; q719R3=0; 
 do i = 1 to dim(qes23a);
  if (qes23a(i) = 17) then qes23aR = (qes23aR + 1);
 end;
 do i = 1 to dim(q719);
  if q719(i) = 13 & (qes_b in (0 -4) or (q711d(i)=curdate_d & q711m(i)=curdate_m & q711y(i)=curdate_y)) then q719R = (q719R + 1);
 end;
 if q719R=0 then do i = 1 to dim(q719);
  if q719(i) = 13 & (q711d(i)  in (-1 -2 -3) or q711m(i) in (-1 -2 -3) or q711y(i) in (-1 -2 -3)) then q719R3 = (q719R3 + 1);
 end; 
end;
 
if qes_23a_01=-5 then retire=-5;
else do;
 retire=0;
 if (q7_38 = 5) then do; retire = 1; flag_r0=1; end;
 else if qes23aR > 0 then do; retire = 1; flag_r1=1; end;
 else if q719R>0 then do;   retire = 1; flag_r2=1; end; 
 else if q719R3>0 then do;  retire = 1; flag_r23=1; end;
end; 
 
***** disabled or not at interview date;
if qes_23a_01=-5 then do;
 qes23aD=-5;
 qes43D=-5;
 q719D=-5;
 q113D=-5;
end;
else do;
 qes23aD=0; qes23aD3=0;
 qes43D=0; qes43D3=0;
 q719D=0; q719D3=0;
 q113D=0;
 
 do i = 1 to dim(qes23a);
  if work=0 & qes23a(i) = 10 & ( (0<stopy(i) &  stopy(i)<curdate_y) or (stopy(i)=curdate_y & 0<stopm(i) & stopm(i)<curdate_m)
     or (stopy(i)=curdate_y & stopm(i)=curdate_m & 0<stopd(i) & stopd(i)<curdate_d))  then qes23aD = qes23aD + 1;
 end;
 if qes23aD=0 then do i = 1 to dim(qes23a);
  if work=0 & qes23a(i) = 10 & (stopy(i) in (-1 -2 -3) or stopm(i) in (-1 -2 -3) or stopd(i) in (-1 -2 -3)) then qes23aD3= qes23aD3+1;
 end;
 
 do i = 1 to dim(qes43);
  if (qes43(i) = 2 or qes33(i)=9) & (qes31d(i)=curdate_d & qes31m(i)=curdate_m & qes31y(i)=curdate_y) then qes43D = (qes43D + 1);
 end;
 if qes43D=0 then do i = 1 to dim(qes43);
  if (qes43(i) = 2 or qes33(i)=9) & (qes31d(i) in (-1 -2 -3) or qes31m(i) in (-1 -2 -3) or qes31y(i) in (-1 -2 -3)) & work=0 then qes43D3=qes43D3 + 1;
 end;
 
 do i = 1 to dim(q719);
  if q719(i) = 9 & (qes_b in (0 -4) or (q711d(i)=curdate_d & q711m(i)=curdate_m & q711y(i)=curdate_y)) then q719D = (q719D + 1);
 end;
 if q719D=0 then do i = 1 to dim(q719);
  if q719(i) = 9 & (q711d(i)  in (-1 -2 -3) or q711m(i) in (-1 -2 -3) or q711y(i) in (-1 -2 -3)) then q719D3 = (q719D3 + 1);
 end; 
 
 if q11_3=1 then q113D=1;
end;
 
if qes_23a_01=-5 then disable=-5;
else do;
 disable=0;
 if (q7_38 = 4) then do; disable = 1; flag_d0=1; end;
 else if qes23aD>0 then do; disable=1; flag_d1=1; end;
 else if qes43D>0 then do;  disable=1; flag_d2=1; end;
 else if q719D>0 then do;   disable=1; flag_d3=1; end;
 else if q113D>0 then do;   disable=1; flag_d4=1; end;
 else if qes23aD3>0 then do; disable=1; flag_d13=1; end;
 else if qes43D3>0 then do;  disable=1; flag_d23=1; end;
 else if q719D3>0 then do;   disable=1; flag_d33=1; end;
end;

NLSY79 Appendix 28: NLSY79 Employer History Roster

The Employer History Roster (EHR) has been available to public data users since 2013. This sizeable set of variables incorporates a substantial amount of information about each employer into a single record for each. See Appendix 13: Development of Questionnaires and Codebooks for a description of rosters as a data structure.

Programs that created the EHR can be accessed at the bottom of this page.

Introduction

Throughout NLSY79 history, it has been a common exercise for users to track employer records through multiple survey years. The traditional means of linking job records is somewhat involved, requiring multiple steps and identification of job numbers in current, previous and subsequent survey years (See Appendix 9: Linking Employers Through Survey Years).

The EHR is intended to alleviate if not eliminate the burden of linking jobs for users. In the EHR, employer records through survey years have already been linked into a single continuous cumulative record for each employer ever reported by a respondent. The roster currently contains data for up to 67 employers (up to 67 records). This means that at least one respondent has reported 67 jobs over the course of the NLSY79's 30 survey rounds, spanning 44 years. Most respondents of course will have a much smaller number of jobs reported since 1979 and only a single respondent has reported 67 jobs.

While the EHR does not contain all information ever reported about each employer, it does contain a substantial amount of commonly used data items that are consistently found through the survey's history. Users can also more easily incorporate job-related data items that are not currently on the roster. Instructive examples of how the roster data can be used appear below. Variables that are part of the EHR are available through the NLS Investigator search and extraction tool. These variables can be found in Investigator by using the areas of interest that start with 'EMPLOYER HISTORY,' question names that start with 'EMPLOYERS_ALL' or reference numbers that start with 'E.' The variables in this roster are classified as 'XRND', meaning that they are not linked to any specific survey year (see the Glossary of NLS Terms for a full definition of XRND). Instead, they are updated each round with the most current cumulative data available.

Please note: Variables referenced in the following discussion are described in Table 1, which lists the contents of the Employer History Roster.

Roster construction

The process of constructing the historical EHR began by establishing preliminary linkages similar to that described in Appendix 9. Employers were tracked between current, previous and subsequent survey years using multiple employer numbers in each survey year. After preliminary matches were established, linkages and discrepancies were examined in detail, often using in-house data not available publicly. This might include items such as occupation and industry descriptions and interviewer comments made during the course of an interview, in conjunction with employer names. Examining these items could in some cases serve to clarify connections between jobs reported in various years. Consequently, at least some employer records built in the EHR may be of higher quality than those that can be established using publicly available data.

Employer order

Employers are listed on the EHR in chronological order by the earliest start date reported for a job. For instance:

  • Employer #1 will be the job with the earliest start date ever reported for any job.
  • Employer #4 will be the job with the 4th earliest start date. There will be three jobs with earlier start dates in the roster, numbered Employers #1, #2 and #3.

Please note that the order of an employer on the roster (from 1-67 possible) is based solely on the original start date (the earliest start date available) at the first report of that job. It is not based on the survey year in which the job was first reported. Consider the following example:

  • A respondent has reported 3 jobs through the 1987 survey year. These jobs with original start dates ranging from 1978 to 1984, have the following pattern:
    • Employer first reported 1979, original start date = Jan. 1978
    • Employer first reported 1983, original start date = Nov. 1982
    • Employer first reported 1987, original start date = Jan. 1987

During the 1988 interview, the respondent reports a 4th employer that s/he failed to report at an earlier interview with an original start date of March 1985. While this job will be numbered by the 'unique identification number' as a job reported in the 1988 survey year, its order on the roster will precede the job reported in 1987. Although the 1987 job was reported first, it actually started later. In this simple example, the order of employers on the roster would appear as:

  • Employer #1: first reported 1979, original start date = Jan. 1978, unique id = 19790100
  • Employer #2: first reported 1983, original start date = Nov. 1982, unique id = 19830100
  • Employer #3: first reported 1988, original start date = Mar. 1985, unique id = 19880100
  • Employer #4: first reported 1987, original start date = Jan. 1987, unique id = 19870100

These types of reporting irregularities along with possible isolated errors in recording and data entry errors are not common but are recurrent throughout the life of the survey. As many inconsistencies as possible were resolved in the construction of the EHR.

Roster content

The vast majority of variables currently included on the EHR are directly copied from responses collected during the survey or from data items already coded or created separately for the public release dataset. For example, start and stop dates, currently working status and class of worker are all responses collected during the interview. Occupation and industry variables are coded from responses collected during the interview. Start and stop weeks and array job numbers are variables created by the Work History programs (see Appendix 18: Work History Data).

Table 1 lists the contents of the Employer History Roster by area of interest and question name. The EHR currently contains data for up to 67 jobs ever reported.

Table 1: Employer Roster
EMPLOYER HISTORY Question names Description Source Variables included for:
JOB CHARACTERISTICS EMPLOYERS_ALL_GOVJOB_[YEAR].[JOB#] Was this job a government job? Direct survey responses Each job for each survey year through 1987 (a)
EMPLOYERS_ALL_CPSJOB_[YEAR].[JOB#] Was this job the CPS (current/most recent) job? Direct survey responses Each job for each survey year (a)
EMPLOYERS_ALL_UNION_[YEAR].[JOB#] R covered by union or employee contract on the job? Direct survey responses Each job for each survey year (a)
EMPLOYERS_ALL_CURWK_[YEAR].[JOB#] R currently working for employer at date of interview? Direct survey responses Each job for each survey year (a)
JOB EMPLOYER IDS EMPLOYERS_ALL_NUM_ARRAY_[YEAR].[JOB#] Number loaded into Work History Labor Force Status array Created by Work History Programs Each job for each survey year (a)
EMPLOYERS_ALL_PREVID_[YEAR].[JOB#] Job number of employer from previous interview Direct survey responses Each job for each survey year (a)
EMPLOYERS_ALL_ID_[YEAR].[JOB#] ID number of job in survey year Direct survey responses Each job for each survey year (a)
EMPLOYERS_ALL_UID.[JOB#] (c) Unique identification number for each job, consisting of survey year job first reported, appended with job number in that survey year * 100 (e.g. job #2 first reported in 1980 = 19800200) Created for EHR Each job (b)
JOB HOURS WORKED

EMPLOYERS_ALL_HOURSDAY_[YEAR].[JOB#]

User Note: These variables are not available for self-employed jobs.

Hours per day usually worked at job Direct survey responses Each job for each survey year (a)
EMPLOYERS_ALL_HOURSWEEK_[YEAR].[JOB#] Hours per week usually worked at job Direct survey responses Each job for each survey year (a)
JOB INDUSTRY, OCCUPATION AND CLASS OF WORKER

EMPLOYERS_ALL_IND_[YEAR].[JOB#]

User note: The coding frame for these variables is different for survey years 1979-2000 and for 2002 through current data releases. The 1970 Census coding frame was used for variables through the 2000 survey year. The 2000 Census coding frame was applied in 2002 and subsequent survey years.

Type of business or industry for employer Coded from survey responses Each job for each survey year (a)

EMPLOYERS_ALL_OCC_[YEAR].[JOB#]

User note: The coding frame for these variables is different for survey years 1979-2000 and for 2002 through current data releases. The 1970 Census coding frame was used for variables through the 2000 survey year. The 2000 Census coding frame was applied in 2002 and subsequent survey years.

Occupation for employer Coded from survey responses Each job for each survey year (a)

EMPLOYERS_ALL_COW_[YEAR].[JOB#]

User note: Researchers using these variables across multiple survey rounds should take careful note that the response categories changed in 1994. Categories are consistent from 1979-1993, and from 1994 through the current data release.

Class of worker for employer Coded from survey responses Each job for each survey year (a)
JOB ORIGINAL STARTDATES AND MOST RECENT STOPDATES EMPLOYERS_ALL_STOPDATE_MOST_RECENT.[JOB#]~[D/M/Y] (d) Most recent stopdates for employer Created from survey responses for EHR Each job (b)
EMPLOYERS_ALL_STARTDATE_ORIGINAL.[JOB#]~[D/M/Y] (c) Original startdate for employer Created from survey responses for EHR Each job (b)
JOB PAYRATES AND TIME UNITS EMPLOYERS_ALL_TIMERATE_[YEAR].[JOB#] Time unit for rate of pay Survey responses Each job for each survey year (a)
EMPLOYERS_ALL_PAYRATE_[YEAR].[JOB#] Payrate for employer Coded from survey responses Each job for each survey year (a)
EMPLOYERS_ALL_HRLY_WAGE_[YEAR].[JOB#] Hourly rate of pay for employer Coded from survey responses Each job for each survey year (a)
 JOB START DATES EMPLOYERS_ALL_STARTDATE_[YEAR].[JOB#]~[D/M/Y] Startdate for employer Direct survey responses Each job for each survey year (a)
JOB START WEEKS EMPLOYERS_ALL_STARTWEEK_[YEAR].[JOB#] Week number of start date for job Created by Work History Programs Each job for each survey year (a)
JOB STOP DATES EMPLOYERS_ALL_STOPDATE_[YEAR].[JOB#]~[D/M/Y] Stop date for employer Direct survey responses Each job for each survey year (a)
JOB STOP WEEKS EMPLOYERS_ALL_STOPWEEK_[YEAR].[JOB#] Week number of stop date for job Created by Work History Programs Each job for each survey year (a)
JOB TENURE AND PRETENURE EMPLOYERS_ALL_PRETEN_[YEAR].[JOB#] Months worked for employer before date of last interview Direct survey responses Each job for each survey year (a)
EMPLOYERS_ALL_TENURE_[YEAR].[JOB#] Total weeks tenure with employer Created by Work History Programs Each job for each survey year (a)
EMPLOYERS_ALL_PAST_[YEAR].[JOB#] R work for employer before date of last interview? Direct survey responses Each job for each survey year (a)
 JOB WHY LEFT

EMPLOYERS_ALL_WHYLEFT_[YEAR].[JOB#]

User note: Researchers using these variables across multiple survey rounds should take careful note that the response categories and assignments of response codes have changed a number of times over the 30 survey rounds. For example, response code "2" may mean 'Discharged or fired' in one survey year and 'Plant closed' in another. Likewise, 'Layoff' is grouped with 'Plant closed, or end of temporary or seasonal job' in some survey years and is listed as a separate response category in others.

Reason left job Direct survey responses Each job for each survey year (a)

EMPLOYERS_ALL_WHYLEFT_MOST_RECENT.[JOB#]

User note: This variable contains the most recent reason why the respondent left the job, even if the respondent has since returned and is currently working at that job. Also please note: Response categories for these variables incorporate all possible responses across survey years. For instance, 'Layoff' is listed separately from 'Layoff, plant closed, or end of temporary or seasonal job', because both of these responses categories existed in different survey years.

Reason left job most recent time left Created from survey responses for EHR Each job (b)

EMPLOYERS_ALL_WHYLEFT_MOST_RECENT_COL.[JOB#]

User note: Response categories for these variables collapses all possible categories in the EMPLOYERS_ALL_WHYLEFT_MOST_RECENT.[JOB#] variables into 6 broad categories. This variable contains the most recent reason why the respondent left the job, even if the respondent has since returned and is currently working at that job.

Reason left job most recent time left - collapsed Created from survey responses for EHR Each job (b)
WITHIN JOB GAPS REASON NOT WORKING EMPLOYERS_ALL_WHYNOWK_[YEAR].[JOB#].[GAP#] Reason not working for within job gap Direct survey responses Each job for each gap for each survey year (e)
WITHIN JOB GAPS START DATES EMPLOYERS_ALL_PERSTART_[YEAR].[JOB#].[GAP#] Week number of start dates for within job gap Created by Work History Programs Each job for each gap for each survey year (e)
WITHIN JOB GAPS STOP DATES EMPLOYERS_ALL_PERSTOP_[YEAR].[JOB#].[GAP#] Week number of stop dates for within job gap Created by Work History Programs Each job for each gap for each survey year (e)
WITHIN JOB GAPS WEEKS LOOKING EMPLOYERS_ALL_LOOK_[YEAR].[JOB#].[GAP#] Any weeks looking for work during within job gap Direct survey responses Each job for each gap for each survey year (e)
WITHIN JOB GAPS WEEKS NOT WORKING EMPLOYERS_ALL_NOTLOOK_[YEAR].[JOB#].[GAP#] Number of weeks not looking for work during within job gap Direct survey responses Each job for each gap for each survey year (e)
WITHIN JOB GAPS WEEKS NOT WORKING EMPLOYERS_ALL_WKSNOTWK_[YEAR].[JOB#] Any weeks not working for employer Direct survey responses Each job for each gap for each survey year (e)
  1. Variables created for 'each job for each survey year' will have one variable picked up for each survey year for each job the respondent has reported. For instance, the EMPLOYERS_ALL_CURWK_[YEAR].[JOB#] set of variables will include the 'currently working' status for each job reported, in each survey year that a job was active. If a respondent reports employer #1, spanning from 1980-1989, a variable will be present for employer #1 for each survey year (EMPLOYERS_ALL_CURWK_1980.01, EMPLOYERS_ALL_CURWK_1981.01, EMPLOYERS_ALL_CURWK_1982.01...EMPLOYERS_ALL_CURWK_1989.01). If the respondent reports employer #2, spanning from 1985-1990, another set of those variables would be available for employer #2 for each of those survey years (EMPLOYERS_ALL_CURWK_1985.02, EMPLOYERS_ALL_CURWK_1986.02, etc.). Users should note that the EMPLOYERS_ALL_GOVJOB_[YEAR].[JOB#] set of variables only exist through 1987, when that question was dropped from the survey.
  2. Variables created for 'each job' will have one variable per employer. EMPLOYERS_ALL_UID.[JOB#], EMPLOYERS_ALL_STARTDATE_ORIGINAL.[JOB#]~[D/M/Y] and EMPLOYERS_ALL_STOPDATE_MOST_RECENT.[JOB#]~[D/M/Y] are all examples of variables that appear only once for each job. Each employer has only one unique identification number, one original start date and one most recent stop date. These variables will be present for each reported employer, regardless of the survey years in which they were reported.
  3. Once assigned, the unique id and original start date for an employer will not change except under two conditions: 1) an error is found in the reporting record that necessitates either a correction to an original start date or a reordering of employers, and/or 2) more employers are recovered from archives that necessitate a chronological reordering of employers for a respondent.
  4. The most recent stop date for an employer will be updated with each successive interview during which that employer is reported, until the respondent leaves the employer and does not return.
  5. Variables created for 'each job for each gap for each survey' are similar to the variables in group (b) above, but are present for up to 4 gaps reported within the tenure of each job. For example, if a respondent reports two gaps within the tenure for employer #2 and one gap within the tenure for employer #3 in 1986, gap variables would be present for each employer for that survey year. EMPLOYERS_ALL_WHYNOWK_[YEAR].[JOB#].[GAP#] variables in that case would be EMPLOYERS_ALL_WHYNOWK_1986.02.01 and EMPLOYERS_ALL_WHYNOWK_1986.02.02 (gaps within tenure with employer #2), and EMPLOYERS_ALL_WHYNOWK_1986.03.01 (gap within tenure with employer #3).

Roster structure

The Employer History Roster is structured with a single 'record' for each employer. The information from survey year to survey year for the same employers has already been linked into this single record. This allows researchers to look at the record for an employer for the entire time the job was reported. Information for each specific job can be identified using the following search criteria:

  • Question Name (enter search term) + starts with + 'EMPLOYERS_ALL'
  • Word in Title (enter search term) + contains + 'JOB ##'

The NLS Investigator search captured in Figure 1 below will produce all variables on the roster pertaining to the first job a respondent ever reported, regardless of when that job was first reported. Some respondents may have reported their first job in 1979 while others may not have reported their first job until 1985.

Figure 1. Investigator search to produce all variables pertaining to first job reported

sample NLS Investigator search interface

  1. Select study = NLSY79
  2. Click the VARIABLE SEARCH tab
  3. Next, click the SEARCH sub-tab
  4. In the criteria section:
    1. Select QUESTION NAME (enter search term) from the first drop-down menu,
    2. select "starts with" in the second drop-down menu,
    3. type EMPLOYERS_ALL in the text box, and
    4. click ADD
  5. In the next row of criteria:
    1. Select WORD IN TITLE (enter search term) from the first drop-down menu,
    2. select "contains" in the second drop-down menu,
    3. type Job 01 in the text box, and
  6. Click DISPLAY VARIABLES

Each successive survey year presents the opportunity for a respondent to report additional employers. Consider a respondent with the reporting record depicted in Table 2:

Table 2: Hypothetical respondent's reporting record
Interview date Order in EHR Original start date Most recent stop date Unique ID Employer information reported in survey years Examples of variables present for each job
Feb. 1, 1979 4 Mar. 1, 1978 Feb. 2, 1980 19790100 1979, 1980

EMPLOYERS_ALL_UID.04, EMPLOYERS_ALL_STARTDATE_ORIGINAL.04~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.04~[D/M/Y],

EMPLOYERS_ALL_CURWK_1979.04, EMPLOYERS_ALL_ID_1979.04, EMPLOYERS_ALL_IND_1979.04, EMPLOYERS_ALL_OCC_1979.04, EMPLOYERS_ALL_CURWK_1980.04, EMPLOYERS_ALL_ID_1980.04, EMPLOYERS_ALL_IND_1980.04, EMPLOYERS_ALL_OCC_1980.04

3 Feb. 15, 1978 Dec. 15, 1979 19790200 1979, 1980

EMPLOYERS_ALL_UID.03, EMPLOYERS_ALL_STARTDATE_ORIGINAL.03~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.03~[D/M/Y],

EMPLOYERS_ALL_CURWK_1979.03, EMPLOYERS_ALL_ID_1979.03, EMPLOYERS_ALL_IND_1979.03, EMPLOYERS_ALL_OCC_1979.03, EMPLOYERS_ALL_CURWK_1980.03, EMPLOYERS_ALL_ID_1980.03, EMPLOYERS_ALL_IND_1980.03, EMPLOYERS_ALL_OCC_1980.03

1 Feb. 15, 1977 Jan. 15, 1979 19790300 1979

EMPLOYERS_ALL_UID.01, EMPLOYERS_ALL_STARTDATE_ORIGINAL.01~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.01~[D/M/Y],

EMPLOYERS_ALL_CURWK_1979.01, EMPLOYERS_ALL_ID_1979.01, EMPLOYERS_ALL_IND_1979.01, EMPLOYERS_ALL_OCC_1979.01

2 Apr. 1, 1977 Dec. 31, 1978 19790400 1979

EMPLOYERS_ALL_UID.02, EMPLOYERS_ALL_STARTDATE_ORIGINAL.02~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.02~[D/M/Y],

EMPLOYERS_ALL_CURWK_1979.02, EMPLOYERS_ALL_ID_1979.02, EMPLOYERS_ALL_IND_1979.02, EMPLOYERS_ALL_OCC_1979.02

Jan. 15, 1980 5 Jun. 15, 1979 Aug. 1, 1981 19800100 1980, 1981, 1982

EMPLOYERS_ALL_UID.05, EMPLOYERS_ALL_STARTDATE_ORIGINAL.05~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.05~[D/M/Y],

EMPLOYERS_ALL_CURWK_1980.05, EMPLOYERS_ALL_ID_1980.05, EMPLOYERS_ALL_IND_1980.05, EMPLOYERS_ALL_OCC_1980.05, EMPLOYERS_ALL_CURWK_1981.05, EMPLOYERS_ALL_ID_1981.05, EMPLOYERS_ALL_IND_1981.05, EMPLOYERS_ALL_OCC_1981.05, EMPLOYERS_ALL_CURWK_1982.05, EMPLOYERS_ALL_ID_1982.05, EMPLOYERS_ALL_IND_1982.05, EMPLOYERS_ALL_OCC_1982.05

6 Sep. 15, 1979 Jun. 1, 1980 19800200 1980, 1981

EMPLOYERS_ALL_UID.06, EMPLOYERS_ALL_STARTDATE_ORIGINAL.06~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.06~[D/M/Y],

EMPLOYERS_ALL_CURWK_1980.06, EMPLOYERS_ALL_ID_1980.06, EMPLOYERS_ALL_IND_1980.06, EMPLOYERS_ALL_OCC_1980.06, EMPLOYERS_ALL_CURWK_1981.06, EMPLOYERS_ALL_ID_1981.06, EMPLOYERS_ALL_IND_1981.06, EMPLOYERS_ALL_OCC_1981.06

Mar. 4, 1981 8 Nov. 15, 1980 Nov. 15, 1981 19810100 1981, 1982

EMPLOYERS_ALL_UID.08, EMPLOYERS_ALL_STARTDATE_ORIGINAL.08~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.08~[D/M/Y],

EMPLOYERS_ALL_CURWK_1981.08, EMPLOYERS_ALL_ID_1981.08, EMPLOYERS_ALL_IND_1981.08, EMPLOYERS_ALL_OCC_1981.08, EMPLOYERS_ALL_CURWK_1982.08, EMPLOYERS_ALL_ID_1982.08, EMPLOYERS_ALL_IND_1982.08, EMPLOYERS_ALL_OCC_1982.08

7 Aug. 15, 1980 Jun. 30, 1981 19810200 1981, 1982

EMPLOYERS_ALL_UID.07, EMPLOYERS_ALL_STARTDATE_ORIGINAL.07~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.07~[D/M/Y],

EMPLOYERS_ALL_CURWK_1981.07, EMPLOYERS_ALL_ID_1981.07, EMPLOYERS_ALL_IND_1981.07, EMPLOYERS_ALL_OCC_1981.07, EMPLOYERS_ALL_CURWK_1982.07, EMPLOYERS_ALL_ID_1982.07, EMPLOYERS_ALL_IND_1982.07, EMPLOYERS_ALL_OCC_1982.07

9 Dec. 1, 1980 Feb. 28, 1981 19810300 1981

EMPLOYERS_ALL_UID.09, EMPLOYERS_ALL_STARTDATE_ORIGINAL.09~[D/M/Y], EMPLOYERS_ALL_MOST_RECENT_STOPDATE.09~[D/M/Y],

EMPLOYERS_ALL_CURWK_1981.09, EMPLOYERS_ALL_ID_1981.09, EMPLOYERS_ALL_IND_1981.09, EMPLOYERS_ALL_OCC_1981.09

Feb. 2, 1982           Please note: Jobs with unique ids 19800100, 19810100 and 19810200 would still be active during the period between the 1981 and 1982 interview and would therefore have information reported during the 1982 interview.

In the example in Table 2, the respondent has reported four employers at the initial 1979 interview, two additional employers at the 1980 interview, and three more new employers at the 1981 interview.

  • The original start date, most recent stop date and unique id variables fall into the category of variables in Table 1 created for 'each job'. They will be present for all jobs reported by a respondent. If by 1990, the respondent has reported 13 jobs, 13 original start dates, 13 original stop dates and 13 unique ids will be present in the EHR for that respondent.
  • In the Table 2 example, those variables falling into the other categories in Table 1 (variables present for each job (and each gap if applicable) for each survey year in which the job is reported), will be present only for the survey years listed in column 6 ('Employer information reported in survey years'), as those are the survey years in which information on the specific jobs would have been collected. Examples of the variables that would be present for the respondent and jobs listed in Table 2 are in the final column ('Examples of variables present for each job').

Variables for all jobs will not be present for all respondents. For example:

  • A respondent reporting only 5 jobs through 2010 will have no data at all for jobs 6 through 67.
  • Likewise, a respondent reporting their 28th employer starting in 1990 will have no data for that 28th employer picked up from survey years 1979-1989. In this instance, variables EMPLOYERS_ALL_UID.28, EMPLOYERS_ALL_STARTDATE_ORIGINAL.28~[D/M/Y], and EMPLOYERS_ALL_MOST_RECENT_STARTDATE.28~[D/M/Y] will be present but variables from the specific survey years 1979-89 (for instance, EMPLOYERS_ALL_OCC_1979.28, EMPLOYERS_ALL_OCC_1980.28, EMPLOYERS_ALL_OCC_1981.28, etc.) will not be present. Those variables will appear for 1990 when the job is first reported and be present for each subsequent survey year in which the job is reported. If this employer is reported in 1990, 1991 and 1992, EMPLOYERS_ALL_OCC_1990.28, EMPLOYERS_ALL_OCC_1991.28 and EMPLOYERS_ALL_OCC_1992.28 will be present for that respondent for job 28. Occupation codes for all other survey years prior and subsequent will be missing for that job for that respondent.

In addition, different series of variables may have missing items, depending on the reporting pattern. For instance:

  • Users may find that there is data for jobs 1-33 and jobs 36-40 in 1994, but no data for jobs 34-35. Such a pattern would indicate that no respondents reported what would be their 34th and 35th job during the 1994 interview.
  • There are also instances in which specific variable series have similar gaps. For instance, in a specific year, one might find industry and occupation codes for jobs 1-33 and 36-40, but again not for the 34th and 35th job. Such a pattern could result because no one reported their 34th and 35th job that year. Alternatively if several respondents reported a 34th/35th job that survey year, but those jobs did not meet the criteria (based on hours worked and length of time) that would have led to collection of industry and occupation descriptions, there would be no industry and occupation data from that survey year.

Linking to non-roster employer variables

While a large number of commonly used employer-related variables have been incorporated into the EHR, there are some variables in various survey years that have not. Users can link employer variables from a specific survey year that are not currently on the EHR to the cumulative record for an employer on the EHR by using the EMPLOYERS_ALL_ID_[YEAR].[JOB#] variables. These variables contain the identification number of a job in a specific survey year in which it was reported. The following paragraphs describe several examples of linking scenarios.

Imagine that a researcher wants to link data on promotions asked in 1989 to the cumulative employer record found in the EHR. Using the EMPLOYERS_ALL_ID_1989.[JOB#] variables, one can link the promotions data for the correct employer in 1989 to the cumulative employer record in the EHR. To accomplish this, the value of EMPLOYERS_ALL_ID_1989.[JOB#] would be checked for each employer on the EHR. If that value is '1,' the promotion variables for job #1 in 1989 would be linked. If the value of EMPLOYERS_ALL_UID_1989.[JOB#] is '2,' promotion variables for job #2 in 1989 would be linked, and so on.

In another example, one might want to link the EHR cumulative employer record with the information on the respondent's employee status (regular, consultant, contractor, temp worker) asked in 1994, 1996 and 1998. One would again use the EMPLOYERS_ALL_ID_1994.[JOB#], EMPLOYERS_ALL_ID_1996.[JOB#] and EMPLOYERS_ALL_ID_1998.[JOB#] variables in the same way described above to link to the appropriate employee status variables in each year. If the value of EMPLOYERS_ALL_ID_1994.24 is '1' then the employee status variables for employer #1 in 1994 would be linked to the cumulative record for job #24 on the EHR. If the value of EMPLOYERS_ALL_ID_1994.30 is '1' then those variables would be linked to the cumulative record for job #30 on the EHR. Following a similar procedure, the employee status variables for 1996 and 1998 could be linked to the appropriate cumulative job record on the EHR.

In addition, it is now possible to identify which cumulative job records on the EHR link to specific job numbers on the Work History Labor Force Status and Dual Jobs arrays. The EHR includes a set of variables called EMPLOYERS_ALL_NUM_ARRAY_[YEAR].[JOB#]. These variables contain the job number assigned by the Work History programs to each job for each survey year. The job number assigned by the Work History programs consists of the survey round and the number of the job for that survey year. So for instance, the 2nd job reported in 1993 (round 15 of the survey) would appear as job #1502 on the Labor Force Status and/or Dual Job arrays. If this same job was reported as job #1 in 1994 (round 16 of the survey), it would appear as job #1601 in the Labor Force Status array. The EMPLOYERS_ALL_NUM_ARRAY_[YEAR].[JOB#] variables allow users to identify and track a specific employer through the Work History job arrays more easily. For instance, if a user wants additional information on the first job a respondent reported after a gap, and the Work History array job number is 1701, one would want to identify which of the employers in the EHR (1-59) contains 1701 in the EMPLOYERS_ALL_NUM_ARRAY_1996.[JOB#] variable. Establishing this link to the EHR then provides an expanded series of variables depicting the entire history of the employer.

User notes

The Employer History Roster was made available after a considerable effort and was a long time in the making. Improvements will continue to be made as time allows. Some possible areas of improvement and expansion are discussed below:

Each survey year there are a small number of cases that report more than five employers. Prior to 1993, jobs 6+ were provided and stored on separate media. With the many technological transformations that have taken place in the past two decades, much of the information on this small set of jobs in each older survey year has become very difficult to recover from original sources, and is generally not included in the EHR. Reporting of more than five jobs per survey year is not common.

As mentioned earlier, the EHR includes a great deal, but not all, information collected on employers in each survey. For instance, some information on employee status (regular, temp worker, contractor, etc.), starting wages and hours of a job, fringe benefits applying to a job, etc. have been collected in various survey years but are not included on the EHR. Users can access this additional data by linking to individual Employer Supplements in the appropriate survey years.

Employer History Roster programs

Click a topic below to view programming code. Note: ## index reference variables for employers 1-67 in the Employer History Roster.

Variable names in programs and NLSY79 data releases

/****************************** Variables Used ******************************/
/**Variable Names in program            Variable Names in data release**/
UID_## (1-67)				EMPLOYERS_ALL_UID.## (1-67)
STAD_ORI_## (1-67)			EMPLOYERS_ALL_STARTDATE_ORIGINAL.##~D (1-67)
STAM_ORI_## (1-67)			EMPLOYERS_ALL_STARTDATE_ORIGINAL.##~M (1-67)
STAY_ORI_## (1-67)			EMPLOYERS_ALL_STARTDATE_ORIGINAL.##~Y (1-67)
STOD_FIN_## (1-67)			EMPLOYERS_ALL_STOPDATE_MOST_RECENT.##~D (1-67)
STOM_FIN_## (1-67)			EMPLOYERS_ALL_STOPDATE_MOST_RECENT.##~M (1-67)
STOY_FIN_## (1-67)			EMPLOYERS_ALL_STOPDATE_MOST_RECENT.##~Y (1-67)
REASONLEFT_## (1-67)			EMPLOYERS_ALL_WHYLEFT_MOST_RECENT.## (1-67)
REASONLEFTC_## (1-67)			EMPLOYERS_ALL_WHYLEFT_MOST_RECENT_COL.## (1-67)
ID_2022_## (1-67)			EMPLOYERS_ALL_ID_2022.## (1-67)
STAD_2022_## (1-67)			EMPLOYERS_ALL_STADATE_2022.##~D (1-67)
STAM_2022_## (1-67)			EMPLOYERS_ALL_STADATE_2022.##~M (1-67)
STAY_2022_## (1-67)			EMPLOYERS_ALL_STADATE_2022.##~Y (1-67)
STOD_2022_## (1-67)			EMPLOYERS_ALL_STOPDATE_2022.##~D (1-67)
STOM_2022_## (1-67)			EMPLOYERS_ALL_STOPDATE_2022.##~M (1-67)
STOY_2022_## (1-67)			EMPLOYERS_ALL_STOPDATE_2022.##~Y (1-67)
STAWK_2022_## (1-67)			EMPLOYERS_ALL_STARTWEEK_2022.## (1-67)
STOWK_2022_## (1-67)			EMPLOYERS_ALL_STOPWEEK_2022.## (1-67)
COW_2022_## (1-67)			EMPLOYERS_ALL_COW_2022.## (1-67)
CPSJOB_2022_## (1-67)			EMPLOYERS_ALL_CPSJOB_2022.## (1-67)
CURWK_2022_## (1-67)			EMPLOYERS_ALL_CURWK_2022.## (1-67)
HRP_2022_## (1-67)			EMPLOYERS_ALL_HRLY_WAGE_2022.## (1-67)
HRSDAY_2022_## (1-67)			EMPLOYERS_ALL_HOURSDAY_2022.## (1-67)
HRSWK_2022_## (1-67)			EMPLOYERS_ALL_HOURSWEEK_2022.## (1-67)
IND_2022_## (1-67)			EMPLOYERS_ALL_IND_2022.## (1-67)
JOBNUM_A_2022_## (1-67)			EMPLOYERS_ALL_NUM_ARRAY_2022.## (1-67)
MOSLI_2022_## (1-67)			EMPLOYERS_ALL_PRETEN_2022.## (1-67)
OCC_2022_## (1-67)			EMPLOYERS_ALL_OCC_2022.## (1-67)
PREVID_2022_## (1-67)			EMPLOYERS_ALL_PREVID_2022.## (1-67)
RELEFT_2022_## (1-67)			EMPLOYERS_ALL_WHYLEFT_2022.## (1-67)
ROP_2022_## (1-67)			EMPLOYERS_ALL_PAYRATE_2022.## (1-67)
TENURE_2022_## (1-67)			EMPLOYERS_ALL_TENURE_2022.## (1-67)
TUROP_2022_## (1-67)			EMPLOYERS_ALL_TIMERATE_2022.## (1-67)
UNI_2022_## (1-67)			EMPLOYERS_ALL_UNION_2022.## (1-67)
WBEFDI_2022_## (1-67)			EMPLOYERS_ALL_PAST_2022.## (1-67)
UNEM_2022_## (1-67)			EMPLOYERS_ALL_WKSNOTWK_2022.## (1-67)
STAWK_GAP1_2022_## (1-67)		EMPLOYERS_ALL_PERSTAR_2022.##.01 (1-67)
STAWK_GAP2_2022_## (1-67)		EMPLOYERS_ALL_PERSTAR_2022.##.02 (1-67)
STAWK_GAP3_2022_## (1-67)		EMPLOYERS_ALL_PERSTAR_2022.##.03 (1-67)
STAWK_GAP4_2022_## (1-67)		EMPLOYERS_ALL_PERSTAR_2022.##.04 (1-67)
STOWK_GAP1_2022_## (1-67)		EMPLOYERS_ALL_PERSTOP_2022.##.01 (1-67)
STOWK_GAP2_2022_## (1-67)		EMPLOYERS_ALL_PERSTOP_2022.##.02 (1-67)
STOWK_GAP3_2022_## (1-67)		EMPLOYERS_ALL_PERSTOP_2022.##.03 (1-67)
STOWK_GAP4_2022_## (1-67)		EMPLOYERS_ALL_PERSTOP_2022.##.04 (1-67)
REA_GAP1_2022_## (1-67)			EMPLOYERS_ALL_WHYNOWK_2022.##.01 (1-67)
REA_GAP2_2022_## (1-67)			EMPLOYERS_ALL_WHYNOWK_2022.##.02 (1-67)
REA_GAP3_2022_## (1-67)			EMPLOYERS_ALL_WHYNOWK_2022.##.03 (1-67)
REA_GAP4_2022_## (1-67)			EMPLOYERS_ALL_WHYNOWK_2022.##.04 (1-67)
LOOK_GAP1_2022_## (1-67)		EMPLOYERS_ALL_LOOK_2022.##.01 (1-67)
LOOK_GAP2_2022_## (1-67)		EMPLOYERS_ALL_LOOK_2022.##.02 (1-67)
LOOK_GAP3_2022_## (1-67)		EMPLOYERS_ALL_LOOK_2022.##.03 (1-67)
LOOK_GAP4_2022_## (1-67)		EMPLOYERS_ALL_LOOK_2022.##.04 (1-67)
NLOOK_GAP1_2022_## (1-67)		EMPLOYERS_ALL_NOTLOOK_2022.##.01 (1-67)
NLOOK_GAP2_2022_## (1-67)		EMPLOYERS_ALL_NOTLOOK_2022.##.02 (1-67)
NLOOK_GAP3_2022_## (1-67)		EMPLOYERS_ALL_NOTLOOK_2022.##.03 (1-67)
NLOOK_GAP4_2022_## (1-67)		EMPLOYERS_ALL_NOTLOOK_2022.##.04 (1-67)

Linkjobs79_22

did2022=SYMBOL_CURDATE_D;
dim2022=SYMBOL_CURDATE_M;
diy2022=SYMBOL_CURDATE_Y;
stay20221=EMPLOYER_STARTDATE_01_Y;
stay20222=EMPLOYER_STARTDATE_02_Y;
stay20223=EMPLOYER_STARTDATE_03_Y;
stay20224=EMPLOYER_STARTDATE_04_Y;
stay20225=EMPLOYER_STARTDATE_05_Y;
stay20226=EMPLOYER_STARTDATE_06_Y;
stay20227=EMPLOYER_STARTDATE_07_Y;
stay20228=EMPLOYER_STARTDATE_08_Y;
stay20229=EMPLOYER_STARTDATE_09_Y;
stay202210=EMPLOYER_STARTDATE_10_Y;
stay202211=EMPLOYER_STARTDATE_11_Y;
stay202212=EMPLOYER_STARTDATE_12_Y;
stay202213=EMPLOYER_STARTDATE_13_Y;
stay202214=EMPLOYER_STARTDATE_14_Y;
array stay (i)		stay20221-stay20229 stay202210-stay202214;
array curf (i)		EMPLOYER_CURFLAG_01-EMPLOYER_CURFLAG_14;
array curwk (i)		curwk20221-curwk20229 curwk202210-curwk202214;
totemp2022=0;
do i=1 to 14;
	if stay~=. then do;
		totemp2022=totemp2022+1;
		if curf~=. then curwk=curf;
		else if curf=. then curwk=-3;
	end;
	else if stay=. then curwk=-4;
end;
array intyear (*) diy1979 diy1980 diy1981 diy1982 diy1983 diy1984 diy1985 diy1986 diy1987 diy1988 diy1989 diy1990 
				  diy1991 diy1992 diy1993 diy1994 diy1996 diy1998 diy2000 diy2002 diy2004 diy2006 diy2008 diy2010 
				  diy2012 diy2014 diy2016 diy2018 diy2020;
array intrd   (*) i1-i29 (1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 
				  1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020);
if dim2022=. then dim2022=-5;
if did2022=. then did2022=-5;
if diy2022=. then diy2022=-5;
do i=dim(intyear) to 1 by -1;
	if (intyear(i)>0) then do;
		linty=intrd(i);
		leave;
	leave;
	end;
end;
array curwk22	    curwk20221-curwk20229 curwk202210-curwk202014;
do over prev;
	if diy2022=-5 then do;
		prev=-5;
		curwk22=-5;
		totemp2022=-5;
	end;
end;
array job2022 	   (j)  job2022_job2022_1-job2022_job2022_14;
array curwk2022	   (j)  curwk20221-curwk20229 curwk202210-curwk202214;
array jobnum2022   (j)  job_num_a2022_1-job_num_a2022_14;
totemp_wh2022=0;
do j=1 to 14;
	if curwk2022=-5 then do;
		job2022=-5;
		totemp_wh2022=-5;
	end;
	else if curwk2022>-4 then job2022=j;
	else job2022=-4;
	if jobnum2022>0 then totemp_wh2022=totemp_wh2022+1;
end;
array previd    (14)		previd2022_1-previd2022_14;
array check		(14)		check1-check14;
do h=1 to 14;
	do k=1 to 14;
		if h~=k then do;
			if previd(h)>0 and previd(h)=previd(k) then check(h)=k;
		end;
	end;
end;
%macro cc(linty);
	%do a=1 %to 19;
		%do i=1 %to 14;
			if previd2022_&i=&a then do;
				if linty=&linty and job&linty._job&linty._&a~=-4 then job&linty._job2022_&i=&a;
				if linty=&linty and job&linty._job&linty._&a=-4 then flag_jmatch2022_&i=1;
			end;
			else if previd2022_&i=-4 then do;
				job2020_job2022_&i=-4;
			end;
			else if previd2022_&i=-5 then do;
				job2020_job2022_&i=-5;
				flag_jmatch2022_&i=-5;
			end;
			if job&linty._job2022_&i=. then job&linty._job2022_&i=-4;
			if flag_jmatch2022_&i=. then flag_jmatch2022_&i=0;
		%end;
	%end;
%mend cc;
%macro lint;
	%do linty=2020 %to 1994 %by -2;
		%cc(&linty);
	%end;
	%do linty=1993 %to 1979 %by -1;
		%cc(&linty);
	%end;
%mend lint;
%lint;
*Have to break it down since there is not enough memory to run from 1979 to 2018 because of the macros;
*Link job# in 22 to job# in 1994-2018;
%macro cc(a,linty);
	%if job&linty._job2022_&a>0 %then %do;
		%do yr=2018 %to 1994 %by -2;
			%if &linty>&yr %then %do;
				%do i=1 %to 14;
					%do j=1 %to 14;
						if job&linty._job2022_&a=&i and job&yr._job&linty._&i=&j then job&yr._job2022_&a=&j;
						else if job&linty._job2022_&a=-5 then job&yr._job2022_&a=-5;
					%end;
				%end;
			%end;
		%end;
	%end;
%mend cc;
%macro job(linty);
	%do a=1 %to 14;
		%cc(&a,&linty);
	%end;
%mend job;
%macro lint;
	%do linty=2020 %to 1996 %by -2;
		%job(&linty);
	%end;
%mend lint;
%lint;
*Link job# in 22 to job# in 1987-1993;
%macro cc(a,linty);
	%if job&linty._job2022_&a>0 %then %do;
		%do yr=1993 %to 1987 %by -1;
			%if &linty>&yr %then %do;
				%do i=1 %to 14;
					%do j=1 %to 14;
						if job&linty._job2022_&a=&i and job&yr._job&linty._&i=&j then job&yr._job2022_&a=&j;
						else if job&linty._job2022_&a=-5 then job&yr._job2022_&a=-5;
					%end;
				%end;
			%end;
		%end;
	%end;
%mend cc;
%macro job(linty);
	%do a=1 %to 14;
		%cc(&a,&linty);
	%end;
%mend job;
%macro lint;
	%do linty=2020 %to 1994 %by -2;
		%job(&linty);
	%end;
	%do linty=1993 %to 1988 %by -1;
		%job(&linty);
	%end;
%mend lint;
%lint;
*Link job# in 22 to job# in 1983-1986;
%macro cc(a,linty);
	%if job&linty._job2022_&a>0 %then %do;
		%do yr=1986 %to 1983 %by -1;
			%if &linty>&yr %then %do;
				%do i=1 %to 14;
					%do j=1 %to 14;
						if job&linty._job2022_&a=&i and job&yr._job&linty._&i=&j then job&yr._job2022_&a=&j;
						else if job&linty._job2022_&a=-5 then job&yr._job2022_&a=-5;
					%end;
				%end;
			%end;
		%end;
	%end;
%mend cc;
%macro job(linty);
	%do a=1 %to 14;
		%cc(&a,&linty);
	%end;
%mend job;
%macro lint;
	%do linty=2020 %to 1994 %by -2;
		%job(&linty);
	%end;
	%do linty=1993 %to 1984 %by -1;
		%job(&linty);
	%end;
%mend lint;
%lint;
*Link job# in 22 to job# in 1979-1982;
%macro cc(a,linty);
	%if job&linty._job2022_&a>0 %then %do;
		%do yr=1982 %to 1979 %by -1;
			%if &linty>&yr %then %do;
				%do i=1 %to 14;
					%do j=1 %to 14;
						if job&linty._job2022_&a=&i and job&yr._job&linty._&i=&j then job&yr._job2022_&a=&j;
						else if job&linty._job2022_&a=-5 then job&yr._job2022_&a=-5;
					%end;
				%end;
			%end;
		%end;
	%end;
%mend cc;
%macro job(linty);
	%do a=1 %to 14;
		%cc(&a,&linty);
	%end;
%mend job;
%macro lint;
	%do linty=2020 %to 1994 %by -2;
		%job(&linty);
	%end;
	%do linty=1993 %to 1980 %by -1;
		%job(&linty);
	%end;
%mend lint;
%lint;
if diy2000>0 then diy2000=2000;
if diy2002>0 then diy2002=2002;
if diy2004>0 then diy2004=2004;
if diy2006>0 then diy2006=2006;
if diy2008>0 then diy2008=2008;
if diy2010>0 then diy2010=2010;
if diy2012>0 then diy2012=2012;
if diy2014>0 then diy2014=2014;
if diy2016>0 then diy2016=2016;
if diy2018>0 then diy2018=2018;
if diy2020>0 then diy2020=2020;
if diy2022>0 then diy2022=2022;
%macro cc(a);
	%do j=1994 %to 1979 %by -1;
		if (job&j._job2022_&a >0 and job&j._job2022_&a <=9) and diy&j>0 then do;
			staj1_job2022_&a=put(diy&j,4.)||'0'||put(job&j._job2022_&a,1.);
		end;
		else if job&j._job2022_&a >=10 and diy&j>0 then do;
			staj1_job2022_&a=put(diy&j,4.)||put(job&j._job2022_&a,2.);
		end;
	%end;
	%do j=2022 %to 1996 %by -2;
		if (job&j._job2022_&a >0 and job&j._job2022_&a <=9) and diy&j>0 then do;
			staj2_job2022_&a=put(diy&j,4.)||'0'||put(job&j._job2022_&a,1.);
		end;
		else if job&j._job2022_&a >=10 and diy&j>0 then do;
			staj2_job2022_&a=put(diy&j,4.)||put(job&j._job2022_&a,2.);
		end;
	%end;
%mend cc;
%macro job;
	%do a=1 %to 14;
		%cc(&a);
	%end;
%mend job;
%job;
%macro dd(b);
	%do i=2 %to 1 %by -1;
		if staj&i._job2022_&b ~=' ' then do;
			staj_job2022_&b=staj&i._job2022_&b;
		end;
	%end;
%mend dd;
%macro jb;
	%do b=1 %to 14;
		%dd(&b);
	%end;
%mend jb;
%jb;
array staj_job2022 (k) 	staj_job2022_1-staj_job2022_14;
array job2022 	   (k) 	job2022_job2022_1-job2022_job2022_14;
do k=1 to 14;
	if staj_job2022=. and job2022=-5 then staj_job2022=-5;
	else if staj_job2022=. then staj_job2022=-4;
end;
array staj2022 	(*)		staj_job2022_1-staj_job2022_14;
do i=1 to 14;
	do j=1 to 14;
		if i~=j then do;
			if staj2022(i)>0 and staj2022(i)=staj2022(j) then check=1;
		end;
	end;
end;

Endjob22

%macro id(yra,yrb);
	%do j=1 %to 19;
		%do i=1 %to 14;
			if job&yra._job&yrb._&j=&i then job&yrb._job&yra._&i=&j;
			else if job&yra._job&yrb._&j=-4 and job&yrb._job&yra._&i=. then job&yrb._job&yra._&i=-4;
			else if diy&yrb=-5 or diy&yra=-5 then job&yrb._job&yra._&i=-5;
		%end;
	%end;
%mend id;
%macro rd(yrb);
    %do yra = 1979 %to 1994;
        %id(&yra,&yrb);
    %end; 
    %do yra = 1996 %to 2022 %by 2;
        %id(&yra,&yrb);
    %end; 
%mend rd;
%macro rds;
    %do yrb = 1979 %to 1994;
        %rd(&yrb);
    %end; 
    %do yrb = 1996 %to 2022 %by 2;
        %rd(&yrb);
    %end; 
%mend rds;
%rds;
if diy2000>0 then diy2000=2000;
if diy2002>0 then diy2002=2002;
if diy2004>0 then diy2004=2004;
if diy2006>0 then diy2006=2006;
if diy2008>0 then diy2008=2008;
if diy2010>0 then diy2010=2010;
if diy2012>0 then diy2012=2012;
if diy2014>0 then diy2014=2014;
if diy2016>0 then diy2016=2016;
if diy2018>0 then diy2018=2018;
if diy2020>0 then diy2020=2020;
if diy2022>0 then diy2022=2022;
%macro dd(a,yrb);
	%do j=1979 %to 1994 %by 1;
		if &j>=&yrb then do;
			if (job&j._job&yrb._&a>=1 and job&j._job&yrb._&a<=9) and diy&j>0 then do; 
				endj1_job&yrb._&a=put(&j,4.)||'0'||put(job&j._job&yrb._&a,1.);
			end;
			else if job&j._job&yrb._&a>=10 and diy&j>0 then do; 
				endj1_job&yrb._&a=put(&j,4.)||put(job&j._job&yrb._&a,2.);
			end;
		end;
	%end;
	%do j=1996 %to 2022 %by 2;
		if &j>=&yrb then do;
			if (job&j._job&yrb._&a>=1 and job&j._job&yrb._&a<=9) and diy&j>0 then do; 
				endj2_job&yrb._&a=put(&j,4.)||'0'||put(job&j._job&yrb._&a,1.);
			end;
			else if job&j._job&yrb._&a>=10 and diy&j>0 then do; 
				endj2_job&yrb._&a=put(&j,4.)||put(job&j._job&yrb._&a,2.);
			end;
		end;
	%end;
%mend dd;
%macro job(yrb);
	%do a=1 %to 19;
		%dd(&a,&yrb);
	%end;
%mend job;
%macro rds;
    %do yrb = 1979 %to 1994;
        %job(&yrb);
    %end; 
    %do yrb = 1996 %to 2022 %by 2;
        %job(&yrb);
    %end; 
%mend rds;
%rds;
%macro ee(b,yrc);
	%do i=1 %to 2 %by 1;
		if endj&i._job&yrc._&b ~=' ' then do;
			endj_job&yrc._&b=endj&i._job&yrc._&b;
		end;
	%end;
%mend ee;
%macro jb(yrc);
	%do b=1 %to 19;
		%ee(&b,&yrc);
	%end;
%mend jb;
%macro rd;
    %do yrc = 1979 %to 1994;
        %jb(&yrc);
    %end; 
    %do yrc = 1996 %to 2022 %by 2;
        %jb(&yrc);
    %end; 
%mend rd;
%rd;

Stopdate22_final

%macro id(a,yra,yrb);
	%do i=1 %to 9;
		if endj_job&yra._&a=put((&yrb.0&i),6.) then do;
			stod_final&yra._&a=stod&yrb._&i;
			stom_final&yra._&a=stom&yrb._&i;
			stoy_final&yra._&a=stoy&yrb._&i;
		end;
	%end;
	%do i=10 %to 14;*14 jobs in 2022;
		if endj_job&yra._&a=put((&yrb&i),6.) then do;
			stod_final&yra._&a=stod&yrb._&i;
			stom_final&yra._&a=stom&yrb._&i;
			stoy_final&yra._&a=stoy&yrb._&i;
		end;
	%end;
%mend id;
%macro jb(yra,yrb);
	%do a=1 %to 19;
		%id(&a,&yra,&yrb);
	%end;
%mend jb;
%macro rd(yrb);
    %do yra = 1979 %to 1994;
        %jb(&yra,&yrb);
    %end; 
    %do yra = 1996 %to 2022 %by 2;
        %jb(&yra,&yrb);
    %end; 
%mend rd;
%macro rds;
    %do yrb = 2022 %to 2022;
        %rd(&yrb);
    %end; 
%mend rds;
%rds;

Employers_roster_7922_job

array staj  (236)            staj_job1979_1-staj_job1979_5 staj_job1980_1-staj_job1980_5 staj_job1981_1-staj_job1981_5 staj_job1982_1-staj_job1982_5
                                                             staj_job1983_1-staj_job1983_5 staj_job1984_1-staj_job1984_5 staj_job1985_1-staj_job1985_5 staj_job1986_1-staj_job1986_5
                                                             staj_job1987_1-staj_job1987_5 staj_job1988_1-staj_job1988_5 staj_job1989_1-staj_job1989_5 staj_job1990_1-staj_job1990_5
                                                             staj_job1991_1-staj_job1991_5 staj_job1992_1-staj_job1992_5 staj_job1993_1-staj_job1993_5 staj_job1994_1-staj_job1994_5
                                                             staj_job1996_1-staj_job1996_5 staj_job1998_1-staj_job1998_12 staj_job2000_1-staj_job2000_10 staj_job2002_1-staj_job2002_9 
                                                             staj_job2004_1-staj_job2004_12 staj_job2006_1-staj_job2006_11 staj_job2008_1-staj_job2008_11 staj_job2010_1-staj_job2010_9
                                                             staj_job2012_1-staj_job2012_9 staj_job2014_1-staj_job2014_14 staj_job2016_1-staj_job2016_8 staj_job2018_1-staj_job2018_19
                                                             staj_job2020_1-staj_job2020_13 staj_job2022_1-staj_job2022_14;

do i=1 to 236;
            do j=1 to 236;
                        if i~=j then do;
                                    if staj(i)=-4|staj(i)=-5 then staj(i)=' ';
                                    else if staj(j)=-4| staj(j)=-5 then staj(j)=' ';
                                    else if staj(j)=staj(i) then staj(j)=' ' ;
                        end;
            end;
end;

array job          (*)        job1-job236;

count=0;
do i=1 to 236;
            if staj(i)~=' ' then do;
                        count=count+1;
                        j=count;
                        job(j)=staj(i);
            end;
end;


array stad        (j)                    stad1979_1-stad1979_5  stad1980_1-stad1980_5  stad1981_1-stad1981_5  stad1982_1-stad1982_5
                                                            stad1983_1-stad1983_5  stad1984_1-stad1984_5  stad1985_1-stad1985_5  stad1986_1-stad1986_5
                                                            stad1987_1-stad1987_5  stad1988_1-stad1988_5  stad1989_1-stad1989_5  stad1990_1-stad1990_5
                                                            stad1991_1-stad1991_5  stad1992_1-stad1992_5  stad1993_1-stad1993_5  stad1994_1-stad1994_5
                                                            stad1996_1-stad1996_5  stad1998_1-stad1998_12 stad2000_1-stad2000_10 stad2002_1-stad2002_9 
                                                            stad2004_1-stad2004_12 stad2006_1-stad2006_11 stad2008_1-stad2008_11 stad2010_1-stad2010_9
                                                            stad2012_1-stad2012_9  stad2014_1-stad2014_14 stad2016_1-stad2016_8 stad2018_1-stad2018_19
                                                            stad2020_1-stad2020_13 stad2022_1-stad2022_14;
array stam       (j)                    stam1979_1-stam1979_5  stam1980_1-stam1980_5  stam1981_1-stam1981_5  stam1982_1-stam1982_5
                                                            stam1983_1-stam1983_5  stam1984_1-stam1984_5  stam1985_1-stam1985_5  stam1986_1-stam1986_5
                                                            stam1987_1-stam1987_5  stam1988_1-stam1988_5  stam1989_1-stam1989_5  stam1990_1-stam1990_5
                                                            stam1991_1-stam1991_5  stam1992_1-stam1992_5  stam1993_1-stam1993_5  stam1994_1-stam1994_5
                                                            stam1996_1-stam1996_5  stam1998_1-stam1998_12 stam2000_1-stam2000_10 stam2002_1-stam2002_9 
                                                            stam2004_1-stam2004_12 stam2006_1-stam2006_11 stam2008_1-stam2008_11 stam2010_1-stam2010_9
                                                            stam2012_1-stam2012_9  stam2014_1-stam2014_14 stam2016_1-stam2016_8 stam2018_1-stam2018_19
                                                            stam2020_1-stam2020_13 stam2022_1-stam2022_14;
array stay        (j)                    stay1979_1-stay1979_5  stay1980_1-stay1980_5  stay1981_1-stay1981_5  stay1982_1-stay1982_5
                                                            stay1983_1-stay1983_5  stay1984_1-stay1984_5  stay1985_1-stay1985_5  stay1986_1-stay1986_5
                                                            stay1987_1-stay1987_5  stay1988_1-stay1988_5  stay1989_1-stay1989_5  stay1990_1-stay1990_5
                                                            stay1991_1-stay1991_5  stay1992_1-stay1992_5  stay1993_1-stay1993_5  stay1994_1-stay1994_5
                                                            stay1996_1-stay1996_5  stay1998_1-stay1998_12 stay2000_1-stay2000_10 stay2002_1-stay2002_9 
                                                            stay2004_1-stay2004_12 stay2006_1-stay2006_11 stay2008_1-stay2008_11 stay2010_1-stay2010_9
                                                            stay2012_1-stay2012_9  stay2014_1-stay2014_14 stay2016_1-stay2016_8 stay2018_1-stay2018_19
                                                            stay2020_1-stay2020_13 stay2022_1-stay2022_14;
array stod        (j)                    stod1979_1-stod1979_5  stod1980_1-stod1980_5  stod1981_1-stod1981_5  stod1982_1-stod1982_5
                                                            stod1983_1-stod1983_5  stod1984_1-stod1984_5  stod1985_1-stod1985_5  stod1986_1-stod1986_5
                                                            stod1987_1-stod1987_5  stod1988_1-stod1988_5  stod1989_1-stod1989_5  stod1990_1-stod1990_5
                                                            stod1991_1-stod1991_5  stod1992_1-stod1992_5  stod1993_1-stod1993_5  stod1994_1-stod1994_5
                                                            stod1996_1-stod1996_5  stod1998_1-stod1998_12 stod2000_1-stod2000_10 stod2002_1-stod2002_9 
                                                            stod2004_1-stod2004_12 stod2006_1-stod2006_11 stod2008_1-stod2008_11 stod2010_1-stod2010_9
                                                            stod2012_1-stod2012_9  stod2014_1-stod2014_14 stod2016_1-stod2016_8 stod2018_1-stod2018_19
                                                            stod2020_1-stod2020_13 stod2022_1-stod2022_14;
array stom       (j)                    stom1979_1-stom1979_5  stom1980_1-stom1980_5  stom1981_1-stom1981_5  stom1982_1-stom1982_5
                                                            stom1983_1-stom1983_5  stom1984_1-stom1984_5  stom1985_1-stom1985_5  stom1986_1-stom1986_5
                                                            stom1987_1-stom1987_5  stom1988_1-stom1988_5  stom1989_1-stom1989_5  stom1990_1-stom1990_5
                                                            stom1991_1-stom1991_5  stom1992_1-stom1992_5  stom1993_1-stom1993_5  stom1994_1-stom1994_5
                                                            stom1996_1-stom1996_5  stom1998_1-stom1998_12 stom2000_1-stom2000_10 stom2002_1-stom2002_9 
                                                            stom2004_1-stom2004_12 stom2006_1-stom2006_11 stom2008_1-stom2008_11 stom2010_1-stom2010_9
                                                            stom2012_1-stom2012_9  stom2014_1-stom2014_14 stom2016_1-stom2016_8 stom2018_1-stom2018_19
                                                            stom2020_1-stom2020_13 stom2022_1-stom2022_14;
array stoy        (j)                    stoy1979_1-stoy1979_5  stoy1980_1-stoy1980_5  stoy1981_1-stoy1981_5  stoy1982_1-stoy1982_5
                                                            stoy1983_1-stoy1983_5  stoy1984_1-stoy1984_5  stoy1985_1-stoy1985_5  stoy1986_1-stoy1986_5
                                                            stoy1987_1-stoy1987_5  stoy1988_1-stoy1988_5  stoy1989_1-stoy1989_5  stoy1990_1-stoy1990_5
                                                            stoy1991_1-stoy1991_5  stoy1992_1-stoy1992_5  stoy1993_1-stoy1993_5  stoy1994_1-stoy1994_5
                                                            stoy1996_1-stoy1996_5  stoy1998_1-stoy1998_12 stoy2000_1-stoy2000_10 stoy2002_1-stoy2002_9 
                                                            stoy2004_1-stoy2004_12 stoy2006_1-stoy2006_11 stoy2008_1-stoy2008_11 stoy2010_1-stoy2010_9
                                                            stoy2012_1-stoy2012_9  stoy2014_1-stoy2014_14 stoy2016_1-stoy2016_8 stoy2018_1-stoy2018_19
                                                            stoy2020_1-stoy2020_13 stoy2022_1-stoy2022_14;
array stadp1 (j)           stadp1_1979_1-stadp1_1979_5  stadp1_1980_1-stadp1_1980_5  stadp1_1981_1-stadp1_1981_5  stadp1_1982_1-stadp1_1982_5
                                                            stadp1_1983_1-stadp1_1983_5  stadp1_1984_1-stadp1_1984_5  stadp1_1985_1-stadp1_1985_5  stadp1_1986_1-stadp1_1986_5
                                                            stadp1_1987_1-stadp1_1987_5  stadp1_1988_1-stadp1_1988_5  stadp1_1989_1-stadp1_1989_5  stadp1_1990_1-stadp1_1990_5
                                                            stadp1_1991_1-stadp1_1991_5  stadp1_1992_1-stadp1_1992_5  stadp1_1993_1-stadp1_1993_5  stadp1_1994_1-stadp1_1994_5
                                                            stadp1_1996_1-stadp1_1996_5  stadp1_1998_1-stadp1_1998_12 stadp1_2000_1-stadp1_2000_10 stadp1_2002_1-stadp1_2002_9 
                                                            stadp1_2004_1-stadp1_2004_12 stadp1_2006_1-stadp1_2006_11 stadp1_2008_1-stadp1_2008_11 stadp1_2010_1-stadp1_2010_9
                                                            stadp1_2012_1-stadp1_2012_9  stadp1_2014_1-stadp1_2014_14 stadp1_2016_1-stadp1_2016_8 stadp1_2018_1-stadp1_2018_19
                                                            stadp1_2020_1-stadp1_2020_13 stadp1_2022_1-stadp1_2022_14;
array stamp1 (j)          stamp1_1979_1-stamp1_1979_5  stamp1_1980_1-stamp1_1980_5  stamp1_1981_1-stamp1_1981_5  stamp1_1982_1-stamp1_1982_5
                                                            stamp1_1983_1-stamp1_1983_5  stamp1_1984_1-stamp1_1984_5  stamp1_1985_1-stamp1_1985_5  stamp1_1986_1-stamp1_1986_5
                                                            stamp1_1987_1-stamp1_1987_5  stamp1_1988_1-stamp1_1988_5  stamp1_1989_1-stamp1_1989_5  stamp1_1990_1-stamp1_1990_5
                                                            stamp1_1991_1-stamp1_1991_5  stamp1_1992_1-stamp1_1992_5  stamp1_1993_1-stamp1_1993_5  stamp1_1994_1-stamp1_1994_5
                                                            stamp1_1996_1-stamp1_1996_5  stamp1_1998_1-stamp1_1998_12 stamp1_2000_1-stamp1_2000_10 stamp1_2002_1-stamp1_2002_9 
                                                            stamp1_2004_1-stamp1_2004_12 stamp1_2006_1-stamp1_2006_11 stamp1_2008_1-stamp1_2008_11 stamp1_2010_1-stamp1_2010_9
                                                            stamp1_2012_1-stamp1_2012_9  stamp1_2014_1-stamp1_2014_14 stamp1_2016_1-stamp1_2016_8 stamp1_2018_1-stamp1_2018_19
                                                            stamp1_2020_1-stamp1_2020_13 stamp1_2022_1-stamp1_2022_14;
array stayp1 (j)           stayp1_1979_1-stayp1_1979_5  stayp1_1980_1-stayp1_1980_5  stayp1_1981_1-stayp1_1981_5  stayp1_1982_1-stayp1_1982_5
                                                            stayp1_1983_1-stayp1_1983_5  stayp1_1984_1-stayp1_1984_5  stayp1_1985_1-stayp1_1985_5  stayp1_1986_1-stayp1_1986_5
                                                            stayp1_1987_1-stayp1_1987_5  stayp1_1988_1-stayp1_1988_5  stayp1_1989_1-stayp1_1989_5  stayp1_1990_1-stayp1_1990_5
                                                            stayp1_1991_1-stayp1_1991_5  stayp1_1992_1-stayp1_1992_5  stayp1_1993_1-stayp1_1993_5  stayp1_1994_1-stayp1_1994_5
                                                            stayp1_1996_1-stayp1_1996_5  stayp1_1998_1-stayp1_1998_12 stayp1_2000_1-stayp1_2000_10 stayp1_2002_1-stayp1_2002_9 
                                                            stayp1_2004_1-stayp1_2004_12 stayp1_2006_1-stayp1_2006_11 stayp1_2008_1-stayp1_2008_11 stayp1_2010_1-stayp1_2010_9
                                                            stayp1_2012_1-stayp1_2012_9  stayp1_2014_1-stayp1_2014_14 stayp1_2016_1-stayp1_2016_8  stayp1_2018_1-stayp1_2018_19
                                                            stayp1_2020_1-stayp1_2020_13 stayp1_2022_1-stayp1_2022_14;
array code (j)  $  a1-a236 
                                                            ('197901' '197902' '197903' '197904' '197905'
                                                             '198001' '198002' '198003' '198004' '198005'
                                                             '198101' '198102' '198103' '198104' '198105'
                                                             '198201' '198202' '198203' '198204' '198205'
                                                             '198301' '198302' '198303' '198304' '198305'
                                                             '198401' '198402' '198403' '198404' '198405'
                                                             '198501' '198502' '198503' '198504' '198505'
                                                             '198601' '198602' '198603' '198604' '198605'
                                                             '198701' '198702' '198703' '198704' '198705'
                                                             '198801' '198802' '198803' '198804' '198805'
                                                             '198901' '198902' '198903' '198904' '198905'
                                                             '199001' '199002' '199003' '199004' '199005'
                                                             '199101' '199102' '199103' '199104' '199105'
                                                             '199201' '199202' '199203' '199204' '199205'
                                                             '199301' '199302' '199303' '199304' '199305'
                                                             '199401' '199402' '199403' '199404' '199405'
                                                             '199601' '199602' '199603' '199604' '199605'
                                                             '199801' '199802' '199803' '199804' '199805' '199806' '199807' '199808' '199809' '199810'
                                                             '199811' '199812'
                                                             '200001' '200002' '200003' '200004' '200005' '200006' '200007' '200008' '200009' '200010'
                                                             '200201' '200202' '200203' '200204' '200205' '200206' '200207' '200208' '200209'
                                                             '200401' '200402' '200403' '200404' '200405' '200406' '200407' '200408' '200409' '200410'
                                                             '200411' '200412'
                                                             '200601' '200602' '200603' '200604' '200605' '200606' '200607' '200608' '200609' '200610'
                                                             '200611'
                                                             '200801' '200802' '200803' '200804' '200805' '200806' '200807' '200808' '200809' '200810'
                                                             '200811'
                                                             '201001' '201002' '201003' '201004' '201005' '201006' '201007' '201008' '201009'
                                                             '201201' '201202' '201203' '201204' '201205' '201206' '201207' '201208' '201209'                                       
                                                             '201401' '201402' '201403' '201404' '201405' '201406' '201407' '201408' '201409' '201410'
                                                             '201411' '201412' '201413' '201414'
                                                             '201601' '201602' '201603' '201604' '201605' '201606' '201607' '201608'
                                                             '201801' '201802' '201803' '201804' '201805' '201806' '201807' '201808' '201809' '201810'
                                                             '201811' '201812' '201813' '201814' '201815' '201816' '201817' '201818' '201819'
                                                             '202001' '202002' '202003' '202004' '202005' '202006' '202007' '202008' '202009' '202010'
                                                             '202011' '202012' '202013'                                         
                                                             '202201' '202202' '202203' '202204' '202205' '202206' '202207' '202208' '202209' '202210'
                                                             '202211' '202212' '202213' '202214');                                               

do over stay;
            sta_d=stad;
            sta_m=stam;
            sta_y=stay;
            sto_d=stod;
            sto_m=stom;
            sto_y=stoy;
            gapsta_d=stadp1;
            gapsta_m=stamp1;
            gapsta_y=stayp1;

            jobcode=code;
            output;
end;

array dido (k)              did1979 did1980 did1981 did1982    did1983 did1984 did1985 did1986 did1987 did1988 
                                                            did1989 did1990         did1991 did1992 did1993 did1994 did1996 did1998 did2000 did2002
                                                            did2004 did2006 did2008 did2010 did2012 did2014 did2016 did2018 did2020 did2022;

array dimo (k)             dim1979 dim1980 dim1981 dim1982 dim1983 dim1984 dim1985 dim1986 dim1987 dim1988
                                                            dim1989 dim1990      dim1991 dim1992 dim1993 dim1994 dim1996 dim1998 dim2000 dim2002
                                                            dim2004 dim2006 dim2008 dim2010 dim2012 dim2014 dim2016 dim2018 dim2020 dim2022;

array diyo (k)              diy1979 diy1980 diy1981 diy1982    diy1983 diy1984 diy1985 diy1986 diy1987 diy1988
                                                            diy1989 diy1990         diy1991 diy1992 diy1993 diy1994 diy1996 diy1998 diy2000 diy2002
                                                            diy2004 diy2006 diy2008 diy2010 diy2012 diy2014 diy2016 diy2018 diy2020 diy2022;

array dlido (k)             dlid1979 dlid1980 dlid1981 dlid1982 dlid1983 dlid1984 dlid1985 dlid1986 dlid1987 dlid1988
                                                            dlid1989 dlid1990 dlid1991 dlid1992 dlid1993 dlid1994 dlid1996 dlid1998 dlid2000 dlid2002
                                                            dlid2004 dlid2006 dlid2008 dlid2010 dlid2012 dlid2014 dlid2016 dlid2018 dlid2020 dlid2022;

array dlimo (k)                        dlim1979 dlim1980 dlim1981 dlim1982       dlim1983 dlim1984 dlim1985 dlim1986 dlim1987 dlim1988
                                                            dlim1989 dlim1990 dlim1991 dlim1992 dlim1993 dlim1994 dlim1996 dlim1998 dlim2000 dlim2002
                                                            dlim2004 dlim2006 dlim2008 dlim2010 dlim2012 dlim2014 dlim2016 dlim2018 dlim2020 dlim2022;

array dliyo (k)             dliy1979 dliy1980 dliy1981 dliy1982 dliy1983 dliy1984 dliy1985 dliy1986 dliy1987 dliy1988
                                                            dliy1989 dliy1990 dliy1991 dliy1992 dliy1993 dliy1994 dliy1996 dliy1998 dliy2000 dliy2002
                                                            dliy2004 dliy2006 dliy2008 dliy2010 dliy2012 dliy2014 dliy2016 dliy2018 dliy2020 dliy2022;
array code (k)  $  a1-a30
                                                            ('1979' '1980' '1981' '1982' '1983' '1984' '1985' '1986' '1987' '1988' 
                                                             '1989' '1990' '1991' '1992' '1993' '1994' '1996' '1998' '2000' '2002'
                                                             '2004' '2006' '2008' '2010' '2012' '2014' '2016' '2018' '2020' '2022');                                       
do over dido;
            dim=dimo;
            did=dido;
            diy=diyo;
            dlim=dlimo;
            dlid=dlido;
            dliy=dliyo;

            year=code;
            output;
end;

if sta_y=0 or sta_y=1900 then do;
            sta_d=-3;
            sta_m=-3;
            sta_y=-3;
end;

lintdate=mdy(dlim, dlid, dliy);
startdate=mdy(sta_m, sta_d, sta_y);
gapdate=mdy(gapsta_m, gapsta_d, gapsta_y);
stopdate=mdy(sto_m, sto_d, sto_y);
intdate=mdy(dim, did, diy);

if (sta_d<0 and sta_m>0 and sta_y>0) then do;
            sta_d1=1;
            sta_m1=sta_m;
            sta_y1=sta_y;
end;

else if (sta_d<0 and sta_m<0 and sta_y>0) then do;
            sta_d1=1;
            sta_m1=1;
            sta_y1=sta_y;
end;

else if (sta_d>0 and sta_m<0 and sta_y>0) then do;
            if stopdate>0 and sta_y<sto_y and sta_y>dliy then do;
                        sta_m1=1;
                        sta_d1=sta_d;
                        sta_y1=sta_y;
            end;
            else if stopdate>0 and sta_y<sto_y and sta_y=dliy then do;
                        sta_m1=dlim+3;
                        sta_d1=sta_d;
                        sta_y1=sta_y;
            end;
            else if stopdate>0 and sta_y=sto_y and sta_y>=dliy then do;
                        sta_m1=sto_m-1;
                        sta_d1=sta_d;
                        sta_y1=sta_y;
            end;

            else if stopdate=. and sto_y>0 and dliy<sto_y then do;
                        sta_m1=1;
                        sta_d1=sta_d;
                        sta_y1=sta_y;
            end;
end;


else if (sta_y<0) then do;
            if gapsta_y>0 then do;
                        if gapsta_d<0 and gapsta_m<0 then do;
                                    sta_d1=1;
                                    sta_m1=8;
                                    sta_y1=2004;
                        end;
                        else if gapsta_d<0 and gapsta_m>0 then do;
                                    gapsta_d=1;
                                    a=((mdy(gapsta_m, gapsta_d, gapsta_y))-(lintdate))/2;
                                    b=lintdate+a;
                                    sta_d1=day(b);
                                    sta_m1=month(b);
                                    sta_y1=year(b);
                        end;
                        else if gapsta_d>0 and gapsta_m>0 then do;;
                                    if year=1979 then do;
                                                sta_d1=gapsta_d;
                                                sta_m1=gapsta_m;
                                                sta_y1=gapsta_y;
                                    end;
                                    else if year~=1979 then do;
                                    a=(gapdate-lintdate)/2;
                                    b=lintdate+a;
                                    sta_d1=day(b);
                                    sta_m1=month(b);
                                    sta_y1=year(b);
                                    end;
                        end;
            end;
            else if gapsta_y<0 then do;
                        if year=1979 then do;
                                    b=intdate-180;
                                    sta_d1=day(b);
                                    sta_m1=month(b);
                                    sta_y1=year(b);
                        end;
                        else if stopdate<lintdate and stopdate~=. then do;
                                    b=stopdate-90;
                                    sta_d1=day(b);
                                    sta_m1=month(b);
                                    sta_y1=year(b);
                        end;
                        else if stopdate<intdate and stopdate~=. then do;
                                    a=(stopdate-lintdate)/2;
                                    b=lintdate+a;
                                    sta_d1=day(b);
                                    sta_m1=month(b);
                                    sta_y1=year(b);
                        end;
                        else if stopdate=intdate or stopdate=. then do;
                                    a=(intdate-lintdate)/2;
                                    b=lintdate+a;
                                    sta_d1=day(b);
                                    sta_m1=month(b);
                                    sta_y1=year(b);
                        end;
            end;
end;
else do;
            sta_d1=sta_d;
            sta_m1=sta_m;
            sta_y1=sta_y;
end;

if sta_y1<0 then do;
            c=intdate-365;
            sta_d1=day(c);
            sta_m1=month(c);
            sta_y1=year(c);
end;

startdate1=mdy(sta_m1, sta_d1, sta_y1);

if diy>=2014 then do;
            if startdate1<lintdate then do;
                        sta_m1=dlim;
                        sta_d1=dlid+1;
                        sta_y1=dliy;
            end;
end;

proc sort; by norcid sta_y1 sta_m1 sta_d1;
run;dliy then do;
		sta_m1=1;
		sta_d1=sta_d;
		sta_y1=sta_y;
	end;
	else if stopdate>0 and sta_y0 and sta_y=sto_y and sta_y>=dliy then do;
		sta_m1=sto_m-1;
		sta_d1=sta_d;
		sta_y1=sta_y;
	end;
	else if stopdate=. and sto_y>0 and dliy0 then do;
		if gapsta_d<0 and gapsta_m<0 then do;
			sta_d1=1;
			sta_m1=8;
			sta_y1=2004;
		end;
		else if gapsta_d<0 and gapsta_m>0 then do;
			gapsta_d=1;
			a=((mdy(gapsta_m, gapsta_d, gapsta_y))-(lintdate))/2;
 			b=lintdate+a;
			sta_d1=day(b);
			sta_m1=month(b);
			sta_y1=year(b);
		end;
		else if gapsta_d>0 and gapsta_m>0 then do;;
			if year=1979 then do;
				sta_d1=gapsta_d;
				sta_m1=gapsta_m;
				sta_y1=gapsta_y;
			end;
			else if year~=1979 then do;
			a=(gapdate-lintdate)/2;
 			b=lintdate+a;
			sta_d1=day(b);
			sta_m1=month(b);
			sta_y1=year(b);
			end;
		end;
	end;
	else if gapsta_y<0 then do;
		if year=1979 then do;
 			b=intdate-180;
			sta_d1=day(b);
			sta_m1=month(b);
			sta_y1=year(b);
		end;
		else if stopdate=2014 then do;
	if startdate1
	

Employers_roster_22_uid_name_stadate

%macro id(a,yra);
	%do i=1 %to 9;
		if job&a=put((&yra.0&i),6.) then do;
			unique_id_&a=put((&yra.0&i),6.)||'00';
			if empname&yra._&i~=' ' then empname_&a=empname&yra._&i;
			else if empname&yra._&i=' ' then empname_&a='MISSING NAME';
			if (stad&yra._&i~=-4|stam&yra._&i~=-4|stay&yra._&i~=-4) then do;
				stad_ori_&a=stad&yra._&i;
				stam_ori_&a=stam&yra._&i;
				stay_ori_&a=stay&yra._&i;
			end;
			else if (stad&yra._&i=-4 and stam&yra._&i=-4 and stay&yra._&i=-4) then do;
				stad_ori_&a=-3;
				stam_ori_&a=-3;
				stay_ori_&a=-3;
			end;
		end;
	%end;
	%do i=10 %to 14;
		if job&a=put((&yra&i),6.) then do;
			unique_id_&a=put((&yra&i),6.)||'00';
			if empname&yra._&i~=' ' then empname_&a=empname&yra._&i;
			else if empname&yra._&i=' ' then empname_&a='MISSING NAME';
			if (stad&yra._&i~=-4|stam&yra._&i~=-4|stay&yra._&i~=-4) then do;
				stad_ori_&a=stad&yra._&i;
				stam_ori_&a=stam&yra._&i;
				stay_ori_&a=stay&yra._&i;
			end;
			else if (stad&yra._&i=-4 and stam&yra._&i=-4 and stay&yra._&i=-4) then do;
				stad_ori_&a=-3;
				stam_ori_&a=-3;
				stay_ori_&a=-3;
			end;
		end;
	%end;
%mend id;
%macro jb(yra);
	%do a=1 %to 67;
		%id(&a,&yra);
	%end;
%mend jb;
%macro rds;
    %do yra = 2022 %to 2022;
        %jb(&yra);
    %end; 
%mend rds;
%rds;

Employers_roster_22_id

%macro id(yra);
	%do a=1 %to 67;
		%do i=1 %to 9;
			if job&a=put((&yra.0&i),6.) and job2022_job&yra._&i>0 then id_2022_&a=job2022_job&yra._&i;
			else if job&a=put((&yra.0&i),6.) and job2022_job&yra._&i=-5 then id_2022_&a=-5;
		%end;
		%do i=10 %to 19;
			if job&a=put((&yra&i),6.) and job2022_job&yra._&i>0 then id_2022_&a=job2022_job&yra._&i;
			else if job&a=put((&yra&i),6.) and job2022_job&yra._&i=-5 then id_2022_&a=-5;
		%end;
	%end;
%mend id;
%macro rd;
    %do yra = 1979 %to 1994;
        %id(&yra);
    %end; 
    %do yra = 1996 %to 2022 %by 2;
        %id(&yra);
    %end; 
%mend rd;
%rd;

Employers_roster_22_others

%macro att(yrb,b);
	%do l=1 %to 14;
		if id_&yrb._&b=&l then do;
			*CPS job;
			if cpsemp&yrb._&l~=-4 and cpsemp&yrb._&l~=. then cpsjob_&yrb._&b=cpsemp&yrb._&l;
			else if cpsemp&yrb._&l=-4|cpsemp&yrb._&l=. then cpsjob_&yrb._&b=-4;
			*occupation code;
			if occ&yrb._&l~=-4 and occ&yrb._&l~=. then occ_&yrb._&b=occ&yrb._&l;
			else if occ&yrb._&l=-4|occ&yrb._&l=. then occ_&yrb._&b=-4;
			*industry code;
			if ind&yrb._&l~=-4 and ind&yrb._&l~=. then ind_&yrb._&b=ind&yrb._&l;
			else if ind&yrb._&l=-4|ind&yrb._&l=. then ind_&yrb._&b=-4;
			*class of worker;
			if cow&yrb._&l~=-4 and cow&yrb._&l~=. then cow_&yrb._&b=cow&yrb._&l;
			else if cow&yrb._&l=-4|cow&yrb._&l=. then cow_&yrb._&b=-4;
			*rate of pay;
			if rop&yrb._&l~=-4 and rop&yrb._&l~=. then rop_&yrb._&b=rop&yrb._&l;
			else if rop&yrb._&l=-4|rop&yrb._&l=. then rop_&yrb._&b=-4;
			*time unit to interpret payrate;
			if tu&yrb._&l~=-4 and tu&yrb._&l~=. then turop_&yrb._&b=tu&yrb._&l;
			else if tu&yrb._&l=-4|tu&yrb._&l=. then turop_&yrb._&b=-4;
			*hourly rate of pay;
			if hrp&yrb._&l~=-4 and hrp&yrb._&l~=. then hrp_&yrb._&b=hrp&yrb._&l;
			else if hrp&yrb._&l=-4|hrp&yrb._&l=. then hrp_&yrb._&b=-4;
			*union;
			if uni&yrb._&l~=-4 and uni&yrb._&l~=. then uni_&yrb._&b=uni&yrb._&l;
			else if uni&yrb._&l=-4|uni&yrb._&l=. then uni_&yrb._&b=-4;
			*hours worked per day;
			if hrsday&yrb._&l~=-4 and  hrsday&yrb._&l~=. then hrsday_&yrb._&b=hrsday&yrb._&l;
			else if hrsday&yrb._&l=-4|hrsday&yrb._&l=. then hrsday_&yrb._&b=-4;
			*hours worked per week;
			if hrswk&yrb._&l~=-4 and hrswk&yrb._&l~=. then hrswk_&yrb._&b=hrswk&yrb._&l;
			else if hrswk&yrb._&l=-4|hrswk&yrb._&l=. then hrswk_&yrb._&b=-4;
			*months worked for employer before last int;
			if mosli&yrb._&l~=-4 and mosli&yrb._&l~=. then mosli_&yrb._&b=mosli&yrb._&l;
			else if mosli&yrb._&l=-4|mosli&yrb._&l=. then mosli_&yrb._&b=-4;
			*tenure;
			if ten&yrb._&l~=-4 and ten&yrb._&l~=. then tenure_&yrb._&b=ten&yrb._&l;
			else if ten&yrb._&l=-4|ten&yrb._&l=. then tenure_&yrb._&b=-4;
			*working at job before di;
			if (wbefdi&yrb._&l~=-4 and wbefdi&yrb._&l~=.) then wbefdi_&yrb._&b=wbefdi&yrb._&l;
			if (wbefdi&yrb._&l=-4|wbefdi&yrb._&l=.) then wbefdi_&yrb._&b=-4;
			*previous employer ID;
			if (previd&yrb._&l~=-4 and previd&yrb._&l~=.) then previd_&yrb._&b=previd&yrb._&l;
			if (previd&yrb._&l=-4|previd&yrb._&l=.) then previd_&yrb._&b=-4;
			*job number loaded into A array;
			if job_num_a&yrb._&l~=-4 and job_num_a&yrb._&l~=. then jobnum_a_&yrb._&b=job_num_a&yrb._&l;
			else if job_num_a&yrb._&l=-4|job_num_a&yrb._&l=. then jobnum_a_&yrb._&b=-4;
			*currently woring at job;
			if curwk&yrb._&l~=-4 and curwk&yrb._&l~=. then curwk_&yrb._&b=curwk&yrb._&l;
			else if curwk&yrb._&l=-4|curwk&yrb._&l=. then curwk_&yrb._&b=-4;
			*reason left job;
			if (curwk&yrb._&l>=-3 and curwk&yrb._&l<=0) and (releft&yrb._&l~=-4 and releft&yrb._&l~=.) then releft_&yrb._&b=releft&yrb._&l;
			else if (curwk&yrb._&l>=-3 and curwk&yrb._&l<0) and (releft&yrb._&l=-4|releft&yrb._&l=.) then releft_&yrb._&b=-4;
			else if curwk&yrb._&l=0 and (releft&yrb._&l=-4|releft&yrb._&l=.) then releft_&yrb._&b=-3;
			else if curwk&yrb._&l=-4 and (releft&yrb._&l=-4|releft&yrb._&l=.) then releft_&yrb._&b=-4;
			else if curwk&yrb._&l=1 then releft_&yrb._&b=-4;
		end;
		else if id_&yrb._&b=-5 then do;
			cpsjob_&yrb._&b=-5;
			occ_&yrb._&b=-5;
			ind_&yrb._&b=-5;
			cow_&yrb._&b=-5;
			rop_&yrb._&b=-5;
			turop_&yrb._&b=-5;
			hrp_&yrb._&b=-5;
			uni_&yrb._&b=-5;
			hrsday_&yrb._&b=-5;
			hrswk_&yrb._&b=-5;
			mosli_&yrb._&b=-5;
			tenure_&yrb._&b=-5;
			wbefdi_&yrb._&b=-5;
			previd_&yrb._&b=-5;
			jobnum_a_&yrb._&b=-5;
			curwk_&yrb._&b=-5;
			releft_&yrb._&b=-5;
		end;
	%end;
%mend att;
%macro rd(b);
    %do yrb = 2022 %to 2022;
        %att(&yrb,&b);
    %end; 
%mend rd;
%macro job;
	%do b=1 %to 67;
		%rd(&b);
	%end;
%mend job;
%job;

Employers_roster_22_stodate_whyleft

%macro id(a,yra,yrb);
	%do i=1 %to 9;
		if endj_job&yra._&a=put((&yrb.0&i),6.) then do;
			if curwk&yrb._&i>=-3 & curwk&yrb._&i<=0 then do;
				reasonleft&yra._&a=whyleft_recode&yrb._&i;
				reasonleftC&yra._&a=whyleft_recodeC&yrb._&i;
			end;
			else if (curwk&yrb._&i>=-3 & curwk&yrb._&i<0) & (whyleft_recode&yrb._&i=.) then do;
				reasonleft&yra._&a=-4;
				reasonleftC&yra._&a=-4;
			end;
			else if curwk&yrb._&i=0 & (whyleft_recode&yrb._&i=.) then do;
				reasonleft&yra._&a=-3;
				reasonleftC&yra._&a=-3;
			end;
		end;
	%end;
	%do i=10 %to 14;
		if endj_job&yra._&a=put((&yrb&i),6.) then do;
			if curwk&yrb._&i>=-3 & curwk&yrb._&i<=0 then do;
				reasonleft&yra._&a=whyleft_recode&yrb._&i;
				reasonleftC&yra._&a=whyleft_recodeC&yrb._&i;
			end;
			else if (curwk&yrb._&i>=-3 & curwk&yrb._&i<0) & (whyleft_recode&yrb._&i=.) then do;
				reasonleft&yra._&a=-4;
				reasonleftC&yra._&a=-4;
			end;
			else if curwk&yrb._&i=0 & (whyleft_recode&yrb._&i=.) then do;
				reasonleft&yra._&a=-3;
				reasonleftC&yra._&a=-3;
			end;
		end;
	%end;
%mend id;
%macro jb(yra,yrb);
	%do a=1 %to 19;
		%id(&a,&yra,&yrb);
	%end;
%mend jb;
%macro rd(yrb);
    %do yra = 1979 %to 1994;
        %jb(&yra,&yrb);
    %end; 
    %do yra = 1996 %to 2022 %by 2;
        %jb(&yra,&yrb);
    %end; 
%mend rd;
%macro rds;
    %do yrb = 2022 %to 2022;
        %rd(&yrb);
    %end; 
%mend rds;
%rds;
%macro id(a,yra);
	%do i=1 %to 9;
		if job&a=put((&yra.0&i),6.) then do;
			if (stod_final&yra._&i~=-4|stom_final&yra._&i~=-4|stoy_final&yra._&i~=-4) then do;
				stod_fin_&a=stod_final&yra._&i;
				stom_fin_&a=stom_final&yra._&i;
				stoy_fin_&a=stoy_final&yra._&i;
			end;
			else if (stod_final&yra._&i=-4 and stom_final&yra._&i=-4 and stoy_final&yra._&i=-4) then do;
				stod_fin_&a=-3;
				stom_fin_&a=-3;
				stoy_fin_&a=-3;
			end;
			reasonleft_&a=reasonleft&yra._&i;
			reasonleftC_&a=reasonleftC&yra._&i;
		end;
	%end;
	%do i=10 %to 14;
		if job&a=put((&yra&i),6.) then do;
			if (stod_final&yra._&i~=-4|stom_final&yra._&i~=-4|stoy_final&yra._&i~=-4) then do;
				stod_fin_&a=stod_final&yra._&i;
				stom_fin_&a=stom_final&yra._&i;
				stoy_fin_&a=stoy_final&yra._&i;
			end;
			else if (stod_final&yra._&i=-4 and stom_final&yra._&i=-4 and stoy_final&yra._&i=-4) then do;
				stod_fin_&a=-3;
				stom_fin_&a=-3;
				stoy_fin_&a=-3;
			end;
			reasonleft_&a=reasonleft&yra._&i;
			reasonleftC_&a=reasonleftC&yra._&i;
		end;
	%end;
%mend id;
%macro jb(yra);
	%do a=1 %to 67;
		%id(&a,&yra);
	%end;
%mend jb;
%macro rds;
    %do yra = 1979 %to 1994;
        %jb(&yra);
    %end; 
    %do yra = 1996 %to 2022 %by 2;
        %jb(&yra);
    %end; 
%mend rds;
%rds;

Employers_roster_22_stdate_stweek

%macro att(yrb,b);
	%do l=1 %to 14;
		if id_&yrb._&b=&l then do;
			*Start day;
			if stad&yrb._&l~=-4 then stad_&yrb._&b=stad&yrb._&l;
			else if stad&yrb._&l=-4 then stad_&yrb._&b=-3;
			*Start month;
			if stam&yrb._&l~=-4 then stam_&yrb._&b=stam&yrb._&l;
			else if stam&yrb._&l=-4 then stam_&yrb._&b=-3;
			*Start year;
			if stay&yrb._&l~=-4 then stay_&yrb._&b=stay&yrb._&l;
			else if stay&yrb._&l=-4 then stay_&yrb._&b=-3;
			*Stop day;
			if stod&yrb._&l~=-4 then stod_&yrb._&b=stod&yrb._&l;
			else if stod&yrb._&l=-4 then stod_&yrb._&b=-3;
			*Stop month;
			if stom&yrb._&l~=-4 then stom_&yrb._&b=stom&yrb._&l;
			else if stom&yrb._&l=-4 then stom_&yrb._&b=-3;
			*Stop year;
			if stoy&yrb._&l~=-4 then stoy_&yrb._&b=stoy&yrb._&l;
			else if stoy&yrb._&l=-4 then stoy_&yrb._&b=-3;
			*Start week;
			if stawk&yrb._&l~=-4 then stawk_&yrb._&b=stawk&yrb._&l;
			else if stawk&yrb._&l=-4 then stawk_&yrb._&b=-3;
			*Stop week;
			if stowk&yrb._&l~=-4 then stowk_&yrb._&b=stowk&yrb._&l;
			else if stowk&yrb._&l=-4 then stowk_&yrb._&b=-3;
		end;
		else if id_&yrb._&b=-5 then do;
			stad_&yrb._&b=-5;
			stam_&yrb._&b=-5;
			stay_&yrb._&b=-5;
			stod_&yrb._&b=-5;
			stom_&yrb._&b=-5;
			stoy_&yrb._&b=-5;
			stawk_&yrb._&b=-5;
			stowk_&yrb._&b=-5;
		end;
	%end;
%mend att;
%macro rd(b);
    %do yrb = 2022 %to 2022;
        %att(&yrb,&b);
    %end; 
%mend rd;
%macro job;
	%do b=1 %to 67;
		%rd(&b);
	%end;
%mend job;
%job;

Employers_roster_22_wksnotworked

%macro att(b);
	%do l=1 %to 19;
		%do k=1 %to 4;
			if id_2022_&b=&l and unemsdli2022_&l=1 then do;
				unem_2022_&b=1;
				if stawkgap&k._2022_&l~=-4 and stawkgap&k._2022_&l~=. then stawk_gap&k._2022_&b=stawkgap&k._2022_&l;
				if stowkgap&k._2022_&l~=-4 and stowkgap&k._2022_&l~=. then stowk_gap&k._2022_&b=stowkgap&k._2022_&l;
				if reap&k._2022_&l~=-4 and reap&k._2022_&l~=. then rea_gap&k._2022_&b=reap&k._2022_&l;
				if lookp&k._2022_&l~=-4 and lookp&k._2022_&l~=. then look_gap&k._2022_&b=lookp&k._2022_&l;
				if nlookp&k._2022_&l~=-4 and nlookp&k._2022_&l~=. then nlook_gap&k._2022_&b=nlookp&k._2022_&l;
			end;
		%end;
	%end;
%mend att;
%macro job;
	%do b=1 %to 67;
		%att(&b);
	%end;
%mend job;
%job;

NLSY79 Appendix 27: IRT Item Parameter Estimates, Scores and Standard Errors

Item Response Theory (IRT) item parameter estimates, scores and standard errors have been calculated for several attitudinal scales administered in multiple NLSY79 survey years as well as in other NLS cohorts. The following PDF files provide detailed descriptions of the creation procedures for these scales:

 

Subscribe to NLSY79